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1. UVOD 
 

1.1. Anatomija i fiziologija dojke  

 

Dojka je žljezdani organ, građen od žljezdanog, vezivnog i masnog tkiva (Slika 1). Nalazi se na 

grudnom košu, vezana za pektoralni mišić vezivnim tračcima koji se nazivaju Cooperovi 

ligamenti. Oko žljezdanog tkiva nalaze se režnjići masnog tkiva, odgovorni za mekanu 

konzistenciju dojke (1).  

 

 

Slika 1. Građa dojke. 1. Cooperovi ligamenti; 2. lobuli; 3. ekstralobularni kanalići; 4. ampula; 

5. glavni kanalići; 6. bradavica; 7. koža; 8.potkožno masno tkivo; 9.masno tkivo unutar dojke 

;10. retromamarno masno tkivo; 11. limfni čvorovi; 12. veliki pektoralni mišić; 13. mali 

pektoralni mišić; 14. rebra.  

Preuzeto s https://ultrasoundregistryreview.com/BreastTrial4.html 

 

 

Areola, bradavica i završni dio mliječnog kanala obloženi su mnogoslojnim pločastim 

epitelom. Prema periferno epitel prelazi u višeslojni cilindrični, a potom u niski dvoredni 

kubični epitel. Kanalići i režnjići obloženi su s dva tipa stanica, mioepitelnim stanicama koje se 

nalaze na bazalnoj membrani i pomažu u sekreciji mlijeka te epitelnim stanicama koje oblažu 

lumen. Mioepitelne stanice imaju i važnu ulogu u održanju normalne strukture i funkcije 
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režnjića i bazalne membrane. Mlijeko proizvode luminalne stanice terminalnih kanalića i 

režnjića, za razliku od obložnih stanica većih kanala.  

Dojke kod žena počinju rasti u pubertetu, s početkom proizvodnje estrogena i progesterona. 

S nastupom puberteta počinju ovulacije, koje su u početku nedovršene, zbog čega se stvara 

manja količina progesterona. Tada estrogen ima primarnu ulogu u proliferaciji stanica i 

povećanju tkiva dojke. Razvija se razgranati sustav kanalića, povećava se perikanalikularno 

vezivno tkivo, prokrvljenost, a odlažu se i masti u stanice. Postupno nastaju potpune ovulacije 

te dolazi do stvaranja progesterona, koji je odgovoran za povećavanje, dijeljenje i sekrecijska 

svojstva žljezdanih stanica. Time se dojke dodatno povećavaju. Na rast kanalića utječu još 

četiri hormona: hormon rasta, prolaktin, glukokortikoidi i inzulin. Obzirom da u muškaraca 

nema hormonske stimulacije kao u žena, u muškoj se dojci mogu naći samo kanalići, bez 

režnjića. Mjesečne cikličke hormonske promjene u žena izazivaju promjene na tkivu dojke 

koje također prolazi kroz faze proliferacije i propadanja (apoptoze). Trudnoća i dojenje 

također mijenjaju tkivo dojke. Kada nastupi menopauza, prestaje stvaranje estrogena i 

progesterona iz jajnika te dolazi do involutivnih promjena u dojkama. Smanjuje se udio 

žljezdanog tkiva na račun masnog tkiva, a ostaje samo nekoliko atrofičnih izvodnih kanala (2). 

Žene s ranom prvom menstruacijom, kasnom menopauzom ili kasnom prvom trudnoćom 

dulje su izložene promjenjivim razinama estrogena, zbog čega imaju veći rizik za razvoj 

karcinoma dojke. Povećan je rizik i u žena koje su produljeno izložene vanjskim estrogenima 

u obliku oralnih kontraceptiva ili hormonskog nadomjesnog liječenja (3).  

 

1.2. Tumori  
 

1.2.1. Klasifikacija tumora 

 

Pojam tumor dolazi iz latinskog jezika, a u direktnom prijevodu označava svaku oteklinu. 

Danas se tumorima smatraju patološke tvorbe koje karakterizira neorganizirani, autonomni, 

nesvrhoviti i parazitni rast. 

Klinički se tumori mogu grubo podijeliti u dobroćudne i zloćudne. Dobroćudni (benigni) tumori 

rastu polako, ekspanzivno, oštro su ograničeni i dobro prokrvljeni. Građeni su od dobro 

diferenciranih stanica sličnih stanicama normalnog tkiva. Nakon radikalnog kirurškog zahvata 
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ne recidiviraju i najčešće imaju dobru prognozu (4). Zloćudne (maligne) tumore karakterizira 

nepravilan oblik, brži i infiltrativan rast, direktno širenje u okolna tkiva, a moguće je i širenje 

krvlju ili limfom u udaljene organe (metastaziranje). Češće recidiviraju, a građeni su od stanica 

koje često ne nalikuju na zdrave stanice tkiva iz kojih je tumor nastao. Često se vide brojne 

mitoze, nekroza i kalcifikacije (4).  

 

1.2.2. Geni uključeni u malignu transformaciju 

 

Nastanak tumora i njegova obilježja vezni su uz promjenu ekspresije gena i/ili njihove 

mutacije. Kod gena razlikujemo onkogene i tumor supresore. Onkogeni su geni čijom 

aktivacijom nastaju tumori, dok su tumor supresori geni  čijom inaktivacijom nastaju tumori. 

Među prvim otkrivenim onkogenima su geni karcinogenih virusa, no kasnije je otkriveno da 

mogu nastati i mutacijama normalnih staničnih gena. Aktivacija onkogena može nastati zbog 

točkastih mutacija, translokacija, delecije/insercije više baza ili amplifikacije. Produkti ovih 

gena imaju normalne fiziološke uloge, poput regulacije rasta stanice i diobe, a njihova 

nekontrolirana aktivacija uzrokuje autonomni rast tumorskih stanica. Među njih spadaju 

faktori rasta (EGF, FGF), receptori za faktore rasta (receptor za epidermalni faktor rasta, EGFR; 

receptor za faktor rasta podrijetlom iz trombocita, PDGFR; receptor za faktore rasta matičnih 

stanica, c-KIT), signalne molekule (RAS, SRC), regulatori diobe stanice (ciklini) te transkripcijski 

faktori (FOS-JUN, MYB) (5).  

Tumor supresori su geni koji imaju fiziološku ulogu zaustavljanja rasta i proliferacije. Ukoliko 

se takvi geni inaktiviraju delecijom ili prestanu funkcionirati zbog mutacije, može nastati 

maligna transformacija. Gubitak tumorsupresorskog gena se manifestira kao gubitak 

heterozigotnosti (engl. loss of heterozygosity, LOH) iz razloga što se nasljeđuju recesivno (6). 

Najpoznatiji tumor supresor je RB-1. Ukoliko su oba gena RB-1 mutirana, kod djece nastaje 

retinoblastom (7). Kod sporadičnih tumora, de novo mutacija nastala je na oba gena.  

Posebno je značajan tumor supresor je TP53, budući da se njegova mutacija, kao i mutacije 

gena koji ga reguliraju mogu pronaći u velikom broju ljudskih tumora (8). Jedna od glavnih 

uloga pTP53 je kontrola prijelaza stanice iz G1 u S fazu. Ukoliko postoji mutacija oba TP53 

gena, izostaje kontrola staničnog ciklusa te stanica prelazi u mitozu bez obzira na oštećenje 

genoma, što je preduvjet za nastanak tumora (9). 



Ocje
na

 ra
da

 

u t
ije

ku

4 
 

Uz onkogene i tumor supresore, za nastanak tumora bitni su i geni koji kontroliraju apoptozu, 

programiranu smrt stanice. Apoptoza je važan homeostatski mehanizam kojim se održava 

ravnoteža između novonastalih i starih stanica (10). Tumori koji nastaju zbog nefunkcionalne 

apoptoze ne pokazuju ubrzano dijeljenje stanica te rastu sporije zbog nakupljanja stanica koje 

su izbjegle staničnu smrt (11).  

Nezaobilazni geni u nastanku tumora su i geni koji sudjeluju u popravku DNA. Ukoliko se 

oštećenja DNA ne poprave prije ulaska u mitozu, ona se prenose na sljedeći red stanica te 

nastaje maligna proliferacija. Predstavnici gena koji kontroliraju popravak DNA su BRCA1 i 

BRCA2 tumorsupresorski geni. Nositelji njihovih mutacija imaju doživotni rizika za rak dojke 

između 41 i 90 posto, uz povećan rizik kontralateralne bolesti (12–14). Nositelji mBRCA1/2 

varijanti imaju značajno povišen rizik i za nastanak drugih vrsta raka, kao što su rak jajnika, rak 

prostate, ali i rak gušterače (15,16). 

 

1.2.3. Obilježja raka  

 

Biološki, tumor ima obilježja koja ga izdvajaju od normalnih, netransformiranih stanica. 2001. 

godine Hanahan i Weinberg predložili su prvih šest obilježja raka, odnosno karakteristika koje 

stanice dobivaju pri malignoj transformaciji (17). To su: 

• Neograničena sposobnost replikacije 

• Samodostatnost signala za proliferaciju  

• Zaobilaženje antiproliferativnih signala  

• Izbjegavanje apoptoze  

• Održana angiogeneza  

• Invazija tkiva i metastaziranje 

 

Isti autori su 2011. dodali još dva obilježja raka : 

• reprogramiranje staničnog metabolizma  

• izbjegavanje imunološkog odgovora 

i dvije omogućujuće karakteristike:  

• genomska nestabilnost i mutabilnost 
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• tumor promovirajuća upala (18) 

Zahvaljujući novim otkrićima iz područja karcinogeneze i terapije tumora, Hanahan je 2022. 

godine predložio još četiri obilježja maligne transformacije (Slika 2):  

• otključavanje fenotipske plastičnosti 

• nemutacijsko epigenetsko reprogramiranje 

• polimorfni mikrobiomi  

• stare (senescentne) stanice (19) 

 

  

 

 

Slika 2. Obilježja raka i terapijske implikacije, prilagođeno iz Hanahan D. Hallmarks of 

Cancer: New Dimensions (19) 
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1.2.3.1. Održavanje proliferativne signalizacije 

 

Najvažnija karakteristika malignih tumora je sposobnost održavanja kontinuirane 

proliferacije. Signalizacija proliferacije u normalnom tkivu odvija se najvećim dijelom putem 

faktora rasta koji se vežu na receptore na površini stanice, koji intracelularno sadrže domenu 

s tirozin kinazom kojom se dalje signal prenosi do jezgre, gdje se inducira rast stanice i ulazak 

u mitozu (20,21). Signalizacija se odvija i između obližnjih stanica (parakrina signalizacija). Kod 

tumorskih stanica mitogena signalizacija odvija se proizvodnjom vlastitih hormona rasta, 

ekspresijom dodatnih receptora za faktore rasta te slanjem signala okolnim zdravim 

stanicama koje potom opskrbljuju tumorske stanice raznim faktorima rasta (22,23). Moguće 

su i strukturne promjene receptora koje omogućuju „automatski“ prijenos signala neovisno o 

ligandu (24). Neovisnost o faktorima rasta tumorske stanice mogu postići i konstitutivnom 

aktivacijom signalnih molekula koje se nalaze niže u signalnom putu (npr. Ras).  

 

1.2.3.2. Izbjegavanje supresora rasta 

Tumor supresori sprječavaju proliferaciju stanica. Među prvim opisanim tumor supresorima 

su RB1 (retinoblastom) i TP53 protein. U normalnim uvjetima djeluju kao središnji čvorovi koji, 

prikupivši signale iz okoline, odlučuju hoće li stanica ići u proliferaciju ili u smjeru 

senescentnosti/apoptoze. Ova dva sustava su komplementarna, budući da RB protein prima 

uglavnom ekstracelularne signale, dok TP53 prima signale iz unutrašnjosti stanice. Ukoliko su 

uvjeti unutar stanice suboptimalni, TP53 može zaustaviti proliferaciju, a ukoliko su oštećenja 

genoma prevelika, TP53 će stanicu usmjeriti prema apoptozi (25–27).  

Sprječavanje proliferacije usko povezanih stanica (kontaktna inhibicija) također je uvjet za 

homeostazu tkiva. NF2 gen i njegov produkt Merlin upravljaju kontaktnom inhibicijom 

učvršćivanjem veza adhezijskih molekula poput E cadherina (28). 

 

1.2.3.3. Izbjegavanje apoptoze, autofagija i nekroza 

Apoptoza, programirana smrt stanice, prirodna je barijera karcinogeneze. Apoptotske 

mehanizme čine regulatori i efektorske komponente. Regulatori poput Fas liganda/receptora 

primaju ekstracelularne proapoptotske signale (ekstrinzični program), dok drugi regulatori, 

poput TP53 primaju intracelularne signale (intrinzični program). Oba programa aktiviraju 

proteaze (kaspaze 8 i 9) koje nastavljaju proteolizu koja rezultira efektorskim kaspazama koje 
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dovode do završne faze apoptoze – rastavljanja stanice i fagocitoze njenih ostataka. Intrizični 

apoptotski program smatra se značajnijom barijerom karcinogeneze (18,29). 

Najpoznatiji mehanizam izbjegavanja apoptoze je isključivanje TP53. Mogući su i drugi načini 

-  isključivanje proapoptotskih faktora (Bax, Bim, Puma), povišena ekspresija antiapoptotskih 

faktora (Bcl-2, Bcl XL) ili signala preživljenja (IGF1/2) (18,30).  

Autofagija je mehanizam kojim stanica u stanjima stresa (npr. nutritivni deficit) razgrađuje 

svoje komponente kako bi ih iskoristila za nove biosinteze ili energiju. Autofagosomi obavijaju 

stanične strukture poput ribosoma i mitohondrija, nakon čega se spajaju s lizosomima gdje se 

stanične komponente razgrađuju na metabolite niže molekularne mase. Tumorske stanice 

pod velikom razinom stresa (sustavna terapija) mogu zahvaljujući autofagiji ući u stanje 

reverzibilnog mirovanja (31,32). 

Nekroza je dugo smatrana nekontroliranom smrću stanice, no dokazi upućuju da i kod nje 

postoji određena razina genetske kontrole. Prilikom nekroze stanica puca, a njezin sadržaj se 

oslobađa u tkivo (33), što dovodi do mobilizacije upalnih stanica. Upalne stanice imaju  

sposobnost poticanja angiogeneze, proliferacije i invazivnosti i tako mogu sudjelovati u rastu 

tumora (34). 

 

1.2.3.4. Omogućavanje beskonačne proliferacije (replikativnosti) 

U normalnim stanicama postoje dvije barijere proliferaciji - senescentnost i kriza. 

Senescentnost je starenje stanice u kojem stanica ostaje živa, ali gubi mogućnost dijeljenja. 

Kriza završava staničnom smrću. Vrlo rijetko, stanice izlaze iz krize i dobivaju neograničeni 

replikacijski potencijal, što se naziva imortalizacijom. U tome ključnu ulogu imaju telomere, 

završeci kromosoma koji se u normalnim uvjetima pri svakoj diobi skraćuju, sve do kritične 

razine kada više ne mogu zaštititi kromosomsku DNA od fuzije sa susjednim kromosomom. 

Kritično skraćenje telomere inducira ulazak stanice u krizu/apoptozu. Telomeraza je 

specijalizirana DNA polimeraza koja produljuje telomere te je gotovo odsutna u normalnim 

stanicama, no u stanicama koje su imortalizirane pokazuje visoku aktivnost, čineći ih otpornim 

na indukciju senescentnosti i apoptoze (53). Odsutnost TP53 i njegova nadzora nad 

integritetom genoma dovodi do loma i fuzija kromosoma, što uzrokuje delecije i amplifikacije 

segmenta genoma i stjecanja veće količine onkogena te disfunkcije tumor supresora. Smatra 

se da „uspješne“ tumorske stanice u početku koriste nisku razinu telomeraza za skraćenje 

telomera te nastanak fuzija kromosoma kojima dobivaju veće količine onkogena i deleciju 
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tumor supresora, a da potom povećavaju aktivnost telomeraze s ciljem održavanja telomera 

i imortalizacije (18). 

 

1.2.3.5. Indukcija angiogeneze 

Angiogeneza se u određenim fiziološkim uvjetima (cijeljenje, menstrualni ciklus) uključuje i 

potom isključuje, a kod tumora je gotovo kontinuirano aktivna (35). Uključivanje i isključivanje 

angiogeneze je pod kontrolom regulatora, od kojih su najpoznatiji vaskularni endotelni faktor 

rasta A (VEGF-A) i trombospondin-1 (TSP-1) (36–38). Tumorsku angiogenezu karakterizira 

disbalans navedenih faktora zbog čega nastaju aberantne, tortuotične i razgranate krvne žile 

s krvarenjima te abnormalnim razinama proliferacije i apoptoze (39). Angiogeni zaokret 

započinje rano u razvoju raka, već na razinama displazije i karcinoma in situ (35,40).  

 

1.2.3.6. Aktivacija invazije i metastaziranja 

Invazija i metastaziranje ključni su za širenje tumora u okolna tkiva i udaljene organe. Kaskada 

invazije i metastaziranja započinje invazijom kroz bazalnu membranu, nakon čega slijede 

intravazacija (ulazak u krvne/limfne žile), ekstravazacija (izlazak iz žila u udaljeno tkivo), 

formiranje mikrometastaza i na kraju kolonizacija (razvoj udaljenih makroskopskih tumora) 

(41). 

Za invaziju i metastaziranje karcinoma ključan je program epitelno-mezenhimalne tranzicije 

(EMT) stanica, što omogućuje invaziju, izbjegavanje apoptoze i diseminaciju (42). EMT je 

izraženija na rubovima tumora (43), a karakteriziraju je gubitak čvrstih veza, prelazak stanica 

iz poligonalno/epitelnog oblika u nazubljeno/fibroblastni oblik, izraženost enzima za 

degradaciju izvanstaničnog matriksa, povećana pokretljivost te povišena otpornost prema 

apoptozi. U proces su uključeni transkripcijski faktori poput Snail, Slug, Twist i Zeb1/2 (83). 

Osim procesa EMT, za invaziju i metastaziranje vrlo je važna heterotipna signalizacija, 

odnosno komunikacija malignih i okolnih stromalnih stanica (44–47).  

Tumorske stanice u udaljenim tkivima prolaze obrnuti proces – mezenhimalno epitelnu 

tranziciju (MET), ponovno poprimajući fenotip stanica primarnog tumora (48). Takav fenotip 

omogućuje im kolonizaciju, za koju je ključna aktivacija angiogeneze. Upravo se nesposobnost 

aktivacije angiogeneze smatra razlogom što mnoge mikrometastaze nikad ne uspiju formirati 

makroskopske tvorbe (49,50). Adaptacija tumorskih stanica na uvjete u novoj okolini očituje 

se kroz autofagiju kojom tumorske stanice ulaze u stanje mirovanja do pojave boljih okolišnih 
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uvjeta (51,52). Mirovanje mikrometastaza može biti i posljedica lokalnih supresora (53) i 

tumor-supresorskog djelovanja imunološkog sustava (50,54).  

Dokazano je da se stanice mogu proširiti i iz premalignih lezija (55,56), kao i iz primarnih 

tumora koji nisu jasno invazivni, ali posjeduju neovaskularizaciju niskog integriteta lumena 

(57). Postoje naznake da su neka tkiva sklonija prihvaćanju određenih tipova tumora (41,58), 

pri čemu je nužna potpora lokalnih stromalnih stanica. Stanice iz metastatskih kolonija mogu 

se također proširiti dalje, kao i vratiti u primarno sijelo (59).   

 

1.2.3.7. Genomska nestabilnost i mutacije 

Povećani broj mutacija u genomu tumorskih stanica postiže se povećanjem osjetljivosti na 

mutagene agense, oštećenjem mehanizama za održavanje genomske stabilnosti, 

kompromitiranjem nadzornih sustava koji u slučajevima značajnog genetskog oštećenja 

usmjeravaju stanicu prema senescentnosti ili apoptozi (60,61). Ovdje je ključna uloga TP53, 

koji je stoga često nazvan čuvarom genoma (62). Mehanizmi održavanja genoma uključuju: 

otkrivanje oštećenja DNA i aktivacija mehanizama popravka, direktan popravak DNA i 

inaktivaciju ili presretanje mutagenih molekula prije oštećenja DNA (60,63,64). 

Genomska nestabilnost može se postići direktnim mutacijama ili epigenetskom represijom 

gena odgovornih za navedene mehanizme. Mutacije tih gena kod miševa izazvale su povećanu 

incidenciju malignih tumora (65). Gubitak telomerne DNA stvara nestabilnost kariotipa, s 

posljedičnim delecijama i amplifikacijama segmenata kromosoma. Obzirom da se aberacije 

kod tumora često pojavljuju na sličnim mjestima, smatra se da su upravo mutacije na tim 

genima ključne za karcinogenezu (66). Iako su mutacije kod tumora vrlo raznolike, nove 

tehnologije sekvencioniranja DNA omogućuju prepoznavanje sve većeg broja mutacija 

povezanih s određenim tipovima tumora, te grupiranje takvih mutacija u panele. 

 

1.2.3.8. Tumor promovirajuća upala 

Iako je primarni cilj imunološkog odgovora uništenje tumora, postoje dokazi da imunološki 

odgovor može potpomognuti karcinogenezu i progresiju tumora. Upala podupire 

karcinogenezu faktorima rasta, preživljenja, proangiogenim faktorima, enzimima za 

remodeliranje ECM-a koji omogućuju angiogenezu, invaziju i metastaziranje te indukcijskim 

signalima za EMT (44,67,68). Osim toga, upalne stanice mogu stvarati reaktivne kisikove vrste 

(ROS) koje su aktivno mutagene i mogu ubrzati malignu alteraciju (68).  
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1.2.3.9. Reprogramiranje energetskog metabolizma 

Reprogramiranje metabolizma energije tumorskim je stanicama potrebno kako bi zadovoljile 

energetske potrebe za rast stanice i diobe. Unatoč prisutnosti kisika, tumorske stanice se za 

dobivanje energije najviše koriste glikolizom, zbog čega se navedeni proces naziva aerobnom 

glikolizom (69). Na taj način dobiva se 18 puta manja količina ATP-a u odnosu na normalan 

proces oksidativne fosforilacije u mitohondrijima. Povišena glikoliza kod tumora povezana je 

s aktivacijom nekih onkogena, poput RAS i MYC, i mutiranih tumor supresora (TP53) (70,71). 

Oslanjanje na glikolizu posebno je vidljivo u stanjima hipoksije, koja je česta kod malignih 

tumora. Pretpostavlja se da sklonost tumorskih stanica glikolizi ima podlogu u metabolitima 

glikolize, koje tumorska stanica koristi za biosintezu makromolekula i organela potrebnih za 

diobu. 

 

1.2.3.10. Izbjegavanje imunološkog odgovora 

Smatra se da u normalnim uvjetima imunološki sustav kontinuirano nadzire tkiva te 

prepoznaje i rano uništava tumorske stanice. Prema toj teoriji, tumor nastaje kada imunološki 

sustav ne prepozna tumorske stanice. Ovu teoriju podupiru dokazi o povećanoj incidenciji 

nekih tumora kod imunokompromitiranih osoba (72). Kod miševa kojima je genetskim 

inženjeringom odstranjena neka komponenta imunološkog sustava, dokazana je veća 

incidencija i brži rast tumora. Primjeri stanica koje su isključivane su CD8 citotoksični limfociti 

T (CTL), CD4 pozitivni TH1 (T helperi tipa 1) i  natural killer (NK stanice). Kod stanica kod kojih 

su isključene dvije populacije stanica, npr T stanice i NK stanice incidencija tumora bila je još 

veća (54,73). Na kliničkoj razini, pacijentici s karcinomom kolona i jajnika kod kojih je 

pronađena visoka razina infiltracije CTL-ima i NK stanicama imaju bolju prognozu (74,75).  

 

1.2.3.11. Mikrookoliš tumora 

Osim samih tumorskih stanica i tumorskih matičnih stanica, postoji niz stanica koje na razne 

načine pridonose tumorogenezi, a nalaze se u okolini tumora u tkivu koje se kod karcinoma 

naziva stroma. Stromalne stanice tumora mogu imati izvor u netumorskim stromalnim 

stanicama, matičnim/progenitornim stanicama strome i stanicama koštane srži (76,77).  

Tumorske matične stanice mogu nastati dediferencijacijom progenitornih stanica ili iz 

normalnih matičnih stanica. Zbog sporog staničnog ciklusa rezistentnije su na standardne 
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citostatike te su u stanju regenerirati tumor nakon kemoterapije (78). Dediferencijacija 

omogućuje da tumorska stanica preuzme potpuno drugačiji fenotip. U tumorima se zbog 

brojnih mutacija mogu pronaći i genetski heterogene stanice (79), što dodatno komplicira 

ciljanu terapiju tumora. 

Endotelne stanice prolaskom kroz angiogeni zaokret ulaze u proliferativnu fazu i stvaraju nove 

krvne žile. Periciti su specijalizirane mezenhimalne stanice koje daju potporu endotelnim 

stanicama. Kada kod tumora takva potpora izostane, krvne žile postaju nestabilne, što 

olakšava hematogenu diseminaciju (80). 

Imunološke stanice mogu suzbijati ili poticati rast tumora. U karcinogenezi mogu sudjelovati 

sekrecijom brojnih signalnih molekula - faktora rasta (EGF, VEGF), kemokina i citokina koji 

potiču upalno stanje te enzima za razgradnju matriksa -  metaloproteinaza, cistein katepsin 

proteaza i heparanaza (44,81).  

Fibroblasti povezani s tumorima su stanice slične fibroblastima i miofibroblasti, a pomažu u 

karcinogenezi pri proliferaciji, angiogenezi, invaziji i metastaziranju (82–84). 

Senescentnost je u normalnim uvjetima ireverzibilno stanje u kojima stanica izgubi mogućnost 

daljnjeg dijeljenja, mijenja morfologiju i metabolizam te aktivira sekretorni fenotip (SASP od 

engl. Senescence Associated Secretory Phenotype), koji stanici omogućuje sekreciju kemokina, 

citokina i proteaza (85–87). Senescentnost mogu inducirati  mikrookolišni faktori poput 

manjka nutrijenata, oštećenja DNA, organela ili infrastrukture stanice, te disbalans 

signalizacije stanice. Sa starenjem se u nekim organima udio senescentnih stanica značajno 

povećava (88,89).  

Kod SASP-a, senescentne stanice mogu poticati rast tumora parakrinom sekrecijom signalnih 

molekula koje izazivaju rast tumora, invaziju, metastaziranje, kao i supresiju protutumorske 

imunosti (86,88,90,91). Tumorske stanice mogu pokazati i reverzibilnu senescentnost, 

odnosno vratiti se u stanje u kojem je moguća daljnja proliferacija. Takva reverzibilna 

senescentnost jedan je od mehanizama razvoja terapijske rezistencije (92).  

Mikrookolišem tumora upravlja heterotipna signalizacija. Početne tumorske stanice započinju 

signalizaciju aktivacijom stromalnih stanica, koje zauzvrat tumorskim stanicama pružaju 

potporu faktorima rasta, kemokinima, citokinima i enzimima razgradnje matriksa. Ova je 

interakcija važna za rast tumora, invaziju i kolonizaciju metastaza. Smatra se da su neka tkiva 

i organi skloniji prihvatu nekih tipova tumora (41) te da primarni tumor može pripremiti 

metastatsko sijelo otpuštanjem citokina i kemokina u sustavnu cirkulaciju (58).  
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1.2.3.12. Otključavanje plastičnosti fenotipa 

Proces diferencijacije stanice završava konačnim stanjem diferenciranosti, bez mogućnosti 

dediferencijacije. Otključavanje fenotipne plastičnosti nužno je za nastanak tumorske stanice 

(93), a može se dogoditi na tri načina: dediferencijacijom normalne stanice prema 

progenitornoj stanici, nastankom tumorske stanice blokadom diferencijacije progenitorne 

stanice ili transdiferencijacijom, odnosno promjenom diferencijacije stanice u novom smjeru. 

Transfdiferencijacija je patohistološki dugo poznata kroz metaplaziju, od čega je najpoznatija 

metaplazija epitelnih stanica donjeg dijela jednjaka iz pločastih u cilindrične, pod utjecajem 

želučane kiseline (Barettov jednjak) (93).  

 

1.2.3.13. Epigenetsko reprogramiranje 

Epigenetska regulacija je nemutacijska promjena na DNA, a kod normalnih stanica posebno 

je važna u embrionalnom razvoju, diferencijaciji i organogenezi (94–96). Kod karcinogeneze 

epigenetsko reprogramiranje nužno je za promjenu epigenoma i prilagodbu stanica 

negativnim mikrookolišnim uvjetima, poput hipoksije (97) i manjka nutrijenata (98). Na rubu 

tumora  mikrokolišni uvjeti uzrokuju epigenetske promjene koje održavaju EMT u fenotipu 

invazivnosti (99). Tumorske stanice različitim tvarima i fizikalnim uvjetima uzrokuju 

epigenetsko reprogramiranje stanica strome koje tada vlastitom sekrecijom potiču daljnji 

razvoj tumora (100).  

 

1.2.3.14. Polimorfni mikrobiomi 

Ekosustav mikroorganizama (mikrobiom) unutar organizma ima važan utjecaj na fenotip 

tumora (101,102). Najčešće ga čini populacija bakterija, koja može imati različit utjecaj na 

nastanak i razvoj raka, ali i na terapijski učinak. Uloga mikrobioma najbolje je istražena u 

probavnom sustavu, gdje mikrobiom sudjeluje u metaboličkoj homeostazi te razgradnji i 

apsorpciji nutrijenata.  Poremećaj mikrobioma može uzrokovati razne bolesti (103) te 

doprinijeti razvoju karcinoma izazivajući mutacije DNA (104), direktnim utjecajem toksina, 

proizvodnjom liganada koji izazivaju proliferaciju (101), izazivanjem senescentnosti epitelnih 

stanica i fibroblasta (105), promjenama metabolizma, poticanjem progresije staničnog 

ciklusa, modifikacijom histona i protumorskom inflamacijom (106). Imunomodulacijska 

sposobnost bakterija dokazana je na melanomu gdje je transplantacija mikrobiota s 
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pacijenata koji su pokazali odgovor na imunoterapiju u crijeva pacijenata koji nisu imali 

odgovor izazvala terapijski odgovor (107).  

 

1.2.4. Karcinom dojke 

Izuzev karcinoma kože, karcinom dojke najčešći je maligni tumor u žena te glavni uzrok smrti 

u žena u razvijenim zemljama (108). Više od milijun žena oboli, a oko pola milijuna žena umre 

svake godine od raka dojke širom svijeta. Prema procjeni Američkog društva za rak za 2022 

godinu, godišnje je 290 tisuća novih dijagnosticiranih raka dojke, a 43 tisuće umire od ove 

maligne bolesti (109). Na razini Europske unije, incidencija je i dalje najviša u razvijenim 

zemljama poput Belgije, Finske i Nizozemske, zbog učinkovitog probira i ranog otkrivanja 

tumora, dok je mortalitet najviši u Slovačkoj i Poljskoj (108). U Hrvatskoj je u 2020. godini 

zabilježeno 2869 novih slučajeva raka dojke te 722 smrtnih slučajeva zbog raka dojke (110). 

Za uspješnost liječenja karcinoma dojke ključno je rano otkrivanje. Najčešće se liječi kirurškim 

zahvatom nakon čega slijede sustavna terapija (hormonska blokada, kemoterapija, 

bioterapija) i zračenje (111). Način liječenja ovisi o karakteristikama tumora i pacijentice, a 

agresivniji tumori se sve češće liječe sustavnom terapijom prije kirurškog zahvata 

(neoadjuvantna sustavna terapija)(112). Kirurški zahvati mogu biti poštedni ili radikalni, s ili 

bez rekonstrukcije dojke, a od sustavnog liječenja može se, ovisno o stadiju i tipu tumora, 

ponuditi konvencionalna kemoterapija, hormonska blokada te pametni lijekovi u obliku 

imunoterapije ili bioterapije. Nakon poštednih operacijskih zahvata ili kod lokalno 

uznapredovalih tumora provodi se i lokoregionalno zračenje dojke i regionalnih limfnih 

čvorova (111). 

 

1.2.4.1. Genski faktori u karcinogenezi raka dojke  

U genezu raka dojke uključeni su brojni geni, od kojih su najpoznatije mutirane  varijante  

tumorsupresorkih gena BRCA1 i BRCA2 (mBRCA), koje su odgovorne za 10-15 posto svih 

karcinoma dojke (15,113). 

Postoje specifični obrasci nasljednih karcinoma dojke i jajnika koji su povezani s mutiranim 

varijantama gena BRCA1/2(15,113). Osim toga, dva vrlo rijetka nasljedna sindroma raka 

također pokazuju povećan rizik za rak dojke - Li-Fraumenijev sindrom (LFS) i Cowdenov 

sindrom, koji su povezani s mutiranim varijantama gena TP53, odnosno PTEN (114,115). 
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PALB2 i CDH1 također se smatraju genima s visokom prodornošću i sklonošću razvoja raka 

dojke (116–119). Ovi nasljedni sindromi, osim povećanog rizika za rak dojke, imaju i nekoliko 

drugih zajedničkih karakteristika. Nastaju iz mutiranih varijanti gena zametnih stanica koje 

nisu unutar spolno vezanih gena, zbog čega se te varijante mogu naslijediti od bilo kojeg 

roditelja. Sindromi se povezuju s pojavom i razvojem raka dojke, ali i drugih vrsta raka u ranoj 

dobi te pokazuju autosomno dominantni tip nasljeđivanja. Osim toga, pojedinci s ovim 

nasljednim sindromima imaju povećan rizik za višestruke slučajeve ranog početka bolesti kao 

i bilateralnu bolest. Iako se mutirane varijante povezane s ovim nasljednim sindromima 

smatraju vrlo prodornima, izražajnost ovih nasljednih sindroma često je varijabilna između 

pojedinaca unutar jedne obitelji (npr. dob pojave tumora, mjesto tumora, broj primarnih 

tumora). 

 

Sindrom raka dojke/jajnika povezan s BRCA 

BRCA1 i BRCA2 geni kodiraju tumorsupresorske proteine. Nositelji mutiranih varijanti 

BRCA1/2 imaju doživotni rizika za rak dojke između 41 i 90 posto, uz povećan rizik 

kontralateralne bolesti (12–14). Iako BRCA1/2 mutirane varijante nose doživotni rizik, 

vjerojatnost razvoja raka u nositelja varira, čak i unutar obitelji s istom varijantom (120). Rak 

dojke se češće pojavljuje u ranijoj dobi (121). Kod nositelja mBRCA1 varijanti veća je učestalost 

trostruko negativnog podtipa (12) (122), a dokazana je i povezanost mBRCA2 varijante i ER-

pozitivnih tumora (12,123,124) no mehanizam te povezanosti još nije poznat. Muškarci koji 

nose mutirane varijante BRCA1/2 također imaju veći rizik za nastanak karcinoma dojke u 

odnosu na opću mušku populaciju (125). 

Nositelji BRCA1/2 mutiranih varijanti imaju značajno povišen rizik i za nastanak drugih vrsta 

raka, kao što su rak jajnika, rak prostate, ali i rak gušterače (15,16) 

Osim BRCA1/2, TP53 i PTEN, dokazani su i drugi geni čije se mutacije povezuju s povišenim 

rizikom za rak dojke i jajnika: ATM, BARD1, BRIP1, CDH1, CHEK2, MSH2, MSH6, MLH1, PMS2, 

EPCAM, NF1, PALB2, RAD51C, RAD51D, i STK11 . Intervencija u smislu kemoprevencije ili 

operacije s ciljem redukcije rizika može se preporučiti kada je doživotni rizik veći od onog opće 

populacije (12%–13% za rak dojke, 1-2 % za rak jajnika) (126–129). 

 

1.2.4.2. Histološka klasifikacija tumora dojke  
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Unatoč otkriću brojnih rizičnih faktora za nastanak karcinoma dojke, etiologija karcinoma 

dojke nije u potpunosti razjašnjena, zbog čega primarna prevencija još uvijek nije moguća. 

Rak dojke je izrazito heterogen te postoji velik broj histoloških tipova. Karcinomi, zloćudni 

tumori epitelnog porijekla, su najčešće duktalni (70-80 %) i lobularni (5-15 %), ali mogu se 

pojaviti i rjeđi podtipovi, poput tubularnog, kribriformnog, mucinoznog, medularnog, 

sekretornog, adenoid cističnog karcinoma i drugih. Također, u dojci se mogu pronaći i tumori 

neepitelnog porijekla, poput phyllodes tumora, limfoma i sarkoma (130). Prema istraživanju 

objavljenom 1992. godine, duktalni karcinom in situ, kribriformni i tubularni karcinom imaju 

odličnu prognozu, s desetogodišnjim preživljenjem od 92%, 91% i 90%. Lošiju prognozu imali 

su mucinozni karcinom (80%), medularni karcinom (51 %), lobularni karcinom (54 %) i duktalni 

karcinom (47 %) (131). Osim histološkog tipa, glavni prognostički faktori karcinoma dojke su 

veličina i gradus tumora, te zahvaćenost limfnih čvorova (132). 

U novije se vrijeme prognostičke skupine ipak definiraju prema biologiji tumora, odnosno 

imunohistokemijskim karakteristikama koje upućuju na pojedine genetske tipove tumora 

(111).  

 

1.2.4.3. Imunofenotip i sustavna terapija karcinoma dojke 

Zahvaljujući napretku genetskih analiza i terapijskih opcija raka dojke, na simpoziju u St. 

Gallenu 2013. godine definirani su imunofenotipovi, odnosno imunohistokemijski surogati 

genetskih tipova karcinoma dojke, prema izraženosti estrogenskih (ER) i progesteronskih (PR) 

receptora, receptora za humani epidermalni faktor rast 2 (HER2) i razini ekspresije 

proliferacijskog indeksa Ki67. Definirane su 4 podskupine karcinoma dojke, luminal A, Luminal 

B HER2 negativni, Luminal B HER2 pozitivni, non-luminalni HER-2 pozitivni i trostruko 

negativni tumori (111). 

Pokazalo se da su hormonski pozitivni tumori, koji su češći kod pacijentica starije životne dobi, 

blažeg tijeka i odgovaraju na hormonsku terapiju. Prema preporukama Američkog udruženja 

patologa i Američkog društva za kliničku onkologiju tumori su ER i PR pozitivni ako je najmanje 

1% stanica pozitivno na spomenute receptore (133). Prema preporukama istih društava, na 

svim karcinomima dojke imunohistokemijskom se analizom očitava izraženost 

transmembranskog proteina HER2 (134). Ako se reakcija očita kao pozitivna, smatra se da te 

pacijentice imaju HER2 pozitivne tumore. HER2 receptor je prekomjerno izražen u 15 do 20% 
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svih invazivnih karcinoma dojke (135), a tradicionalno se povezuje s agresivnošću i lošijom 

prognozom (136).  

 

LUMINALNI TIP A  

Ove tumore karakterizira izraženost hormonskih receptora (ER i PR), negativan HER2 receptor 

te nizak Ki67. Najčešći su, javljaju se češće u starijoj životnoj dobi, često su niskog gradusa i 

najčešće manje agresivnog kliničkog tijeka. Zbog toga se najčešće liječe samo hormonskom 

blokadom, a kemoterapija najčešće nije potrebna (111). 

 

LUMINALNI TIP B  

Luminal B tumori su ER pozitivni, ali ih karakterizira jedna ili više od sljedećih, manje povoljnih 

osobina: PR manji od 20 %, Ki67 veći od 20 % ili HER-2 pozitivnost. Prema HER2 statusu dijele 

se na HER2 pozitivne i HER2 negativne tumore. Karakterizira ih agresivniji tijek i lošija 

prognoza u odnosu na luminalne A tumore. Liječe se antihormonskom terapijom, a često je 

potrebna i sustavna citotoksična i anti-HER2 terapija (obuhvaćena u sljedećem poglavlju) 

(111). 

 

NON LUMINALNI HER2 POZITIVNI  

Ovi tumori nemaju izražene ER i PR receptore, ali pokazuju ekspresiju HER2 receptora. 

Agresivnog su tijeka, često visokog gradusa i niskog stupnja diferenciranosti. Češći su kod 

mlađih žena (prije 40. godine života), a liječe se sustavnom citotoksičnom terapijom i anti 

HER2 terapijom. 

HER2 receptor pripada skupini receptora epidermalnih faktora rasta, zajedno sa HER1, HER3 

i HER4 receptorima. HER2 je jedinstven u odnosu na druge članove HER obitelji po  

sposobnosti konstitutivne dimerizacije bez vezanja liganda. Homodimerizacija ili 

heterodimerizacija s drugim receptorima epidermalnog čimbenika rasta (EGFR) dovodi do 

nizvodne aktivacije više signalnih puteva ključnih za regulaciju funkcije stanice, uključujući 

proliferaciju, diferencijaciju, migraciju i apoptozu. Specifični signalni putovi aktivirani putem 

fosforilacije uključuju Ras/Raf/MAPK, PI3K/AKT i PLCγ/PKC signalne puteve (137). 

Najjači prijenos signala izaziva heterodimer HER2-HER3, osobito putem PI3K/AKT/mTOR puta 

(138). Dva glavna blokatora HER2 receptora koji se danas koriste u kliničkoj praksi su 

trastuzumab i pertuzumab.  
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Prema preporukama Američkog društva za Kliničku onkologiju (eng. American Society of 

Clinical Oncology - ASCO) i Kolegija američkih patologa (eng.  College of American Pathologists 

- CAP) HER2 status potrebno je utvrditi kod svih pacijentica s invazivnim rakom dojke na 

temelju jednog ili više rezultata HER2 testa (Slika 3). HER2 je pozitivan kada (promatranjem 

unutar područja tumora koje iznosi > 10% susjednih i homogenih tumorskih stanica) postoje 

dokazi o prekomjernoj ekspresiji proteina (IHC) ili amplifikaciji gena (broj kopija HER2 ili omjer 

HER2/CEP17 pomoću ISH na temelju brojanja najmanje 20 stanica unutar područja).  

Imunohistokemija (IHC) 2+ definirana je kao invazivni rak dojke sa slabim do umjerenim 

potpunim obojenjem membrane uočenim u > 10% tumorskih stanica. U takvim slučajevima 

potrebno je napraviti refleksno testiranje na istom uzorku ili zatražiti novi uzorak za novo 

testiranje (IHC ili ISH). IHC 1+ definiran je kao slaba, jedva vidljiva obojenost membrane u 

preko 10 % tumorskih stanica.  

IHC 0 je nalaz bez obojenja ili nekompletna, jedva vidljiva obojanost u manje od 10 % 

tumorskih stanica (139).  

 

 

Slika 3. Algoritam HER2 testiranja. Prilagođeno iz Wolf et al (140) 
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Najčešće korišteni anti-HER2 lijekovi su trastuzumab i pertuzumab. Trastuzumab je bio prvo 

rekombinantno humanizirano monoklonsko protutijelo koje je dramatično promijenilo 

liječenje HER2-pozitivnog raka dojke. Trastuzumab se veže na poddomenu IV izvanstanične 

domene HER2 čime djeluje na HER2 na više razina. Vezanje na monomer HER2 blokira 

dimerizaciju receptora i aktivaciju nizvodnih signalnih puteva, također, vezanje antitijela 

blokira proteolitičko cijepanje receptora u aktivniju formu te smanjuje ekspresiju samog 

receptora (141).  

Dodatno, trastuzumab stimulira endocitozu HER2 receptora te izaziva staničnu citotoksičnost 

ovisnu o antitijelima (142). Najozbiljnija nuspojava trastuzumaba je kardiotoksičnost koja se 

povećava kada se trastuzumab kombinira s antraciklinima. Stoga je tijekom i nakon liječenja 

trastuzumabom nužno praćenje funkcije srca tijekom i nakon liječenja trastuzumabom.  

Pertuzumab je također monoklonsko protutijelo usmjereno na HER2 receptor koje pripada 

klasi inhibitora dimerizacije HER-a. Veže se na različitu domenu HER2 od trastuzumaba 

(poddomena II), sprječavajući heterodimerizaciju i homodimerizaciju HER2/HER3 (143). 

Pretkliničke studije (in vitro i na modelima ksenografta), pokazale su sinergističke učinke kada 

se pertuzumab i trastuzumab daju zajedno (144,145). Slično trastuzumabu, učinkovitost 

pertuzumaba je u početku dokazana u metastatskoj bolesti. Velika randomizirana klinička 

studija faze III, CLEOPATRA, pokazala je značajno produljenje preživljenja dodatkom 

pertuzumaba na standardno liječenje docetakselom i trastuzumabom (146,147). Pertuzumab 

nije kardiotoksičan kao trastuzumab, a glavna nuspojava je dijareja (148). 

 

TROSTRUKO NEGATIVAN KARCINOM DOJKE  

Trostruko negativni karcinomi dojke (TNBC, od engl. Triple Negative Breast Cancer) su 

heterogena skupina, a najčešće ih karakterizira agresivan tijek bolesti. Kao što ime sugerira, 

nemaju izražene ER, PR, niti HER2 receptore. Slabo su diferencirani i često se javljaju kod 

mlađih žena (prije 40-e godine). Obzirom na nedostatak ciljnih molekula, ne mogu se liječiti 

ciljanom antihormonskom niti anti-HER2 terapijom. Povezani su s nasljednim (BRCA1/2) 

karcinomom dojke. Zbog visoke proliferacije, često se može očekivati odličan odgovor na 

kemoterapiju, koja se temelji na cisplatini, antraciklinima i inhibitorima diobe (taksani, PARP 

inhibitori) (148). 
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Trostruko negativan rak dojke je u početku doživljavan kao klinički entitet najuže povezan s 

podtipom sličnom bazalnom koji je definiran početkom 2000-ih godina (149). Ipak, pokazalo 

se da je TNBC zapravo operativni termin pod kojim se nalazi heterogena skupina tumora koji 

se razlikuju prema genetskim, patohistološkim i kliničkim karakteristikama (150). U većini 

slučajeva radi se o agresivnim tumorima, koji su učestaliji u mlađoj dobi (150,151). Najčešći je 

tip karcinoma dojke kod nositeljica mutacija BRCA1 (>85 % svih) (152). Unatoč agresivnom 

tijeku, nekoliko je studija pokazalo da ovi tumori češće ostvaruju potpuni odgovor na 

neoadjuvantnu kemoterapiju (153,154). Histološki, većina trostruko negativnih tumora su 

invazivni duktalni karcinomi ne-specijalnog tipa (IDC-NST) (155). Ipak, neki posebni tipovi 

karcinoma dojke često su trostruko negativnog fenotipa, poput metaplastičnog karcinoma 

(156), karcinoma s medularnim osobinama (157) i karcinoma s apokrinim osobinama 

(153,158,159). Svim ovim TNBC-ima zajedničke su karakteristike visok gradus, visoka genetska 

nestabilnost, kompleksnost genoma i rekurentne TP53 mutacije (153). 

Sistematske studije TNBC otkrile su podskupinu tumora niskog gradusa i indolentnog kliničkog 

ponašanja (160). Iako su vrlo rijetki, njihovi se srodnici mogu pronaći u žlijezdama 

slinovnicama (161). To su sekretorni karcinom (162), adenoid cistični karcinom (163) i 

mukoepidermoidni karcinom(164). Iznimka ove grupe je karcinom acinarnih stanica – iako je 

često niskog gradusa, može progredirati do TNBC visokog gradusa. Acinarni karcinomi dojke  

imaju mutacije TP53, složene genome te su na genetskom nivou vrlo slični mikroglandularnoj 

adenozi dojke, koja je prekursor TNBC visokog gradusa (161,165). Među vrlo rijetke TNBC 

spada i karcinom visokih stanica s obrnutim polaritetom (166,167). Sve navedeno dokaz je 

velike heterogenosti TNBC-a.  Stoga su Lehmann i sur. predložili, a kasnije i rafinirali 

klasifikaciju TNBC-a na genskoj razini (168,169).  

Predložena su 4 podtipa: sličan bazalnom tip 1 (engl. basal-like 1, BL1), sličan bazalnom tip 2 

(basal-like 2, BL2), mezenhimalni (M) i luminalni androgen receptor (LAR). Ove četiri skupine 

definirane su specifičnim obrascima ekspresije, a unutar svake skupine varira razina 

imunomodulatornih infiltrata.  BL1 podtip pokazuje povišenu ekspresiju gena koji su uključeni 

u stanični ciklus i diobu i gena koji sudjeluju u odgovoru na oštećenje DNA. BL2 podtip 

pokazuje jedinstven genetski profil koji uključuje signaliziranje putem faktora rasta, glikolizu, 

glukoneogenezu, ekspresiju mioepitelnog markera. M podtip karakterizira povišena 

ekspresija gena odgovornih za pokretljivost. LAR podtip karakterizira signalizacija 

androgenskim receptorom, proizvodnja steroida, metabolizam porfirina i metabolizam 
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androgen-estrogen, unatoč ER negativnosti. U istom  razdoblju, 2015. godine, Burstein i sur. 

definirali su četiri podtipa: LAR, mezenhimalni (MES), imunosuprimirani tumor slični 

bazalnom (engl. Basal like immunosupressed, BLIS) i imunoaktivirani tumori slični bazalnom 

(engl. basal-like immunoactivated, BLIA) (170). BLIA tumori su pokazali najbolje preživljenje 

bez povrata bolesti (engl. Disease Free Survival, DFS), a BLIS najgore. BLIA i BLIS zajednički 

predstavljaju mnoge tumore slične bazalnom s mutacijom BRCA1/2 (zametnom ili 

somatskom)(170–172).  

Unatoč brojnim dokazima genetske heterogenosti TNBC-a, standard sustavnog liječenja je i 

dalje kemoterapija, koja se sve češće aplicira prije operacijskog liječenja. Najčešće se koristi 

kombinacija antraciklina (adriamicin) i ciklofosfamida u 4-6 ciklusa, nakon čega slijedi 12-

tjedna terapija taksanima (paklitaksel). Indikacija za neoadjuvantnu kemoterapiju postavlja se 

kod većine pacijentica s TNBC koji je veći od 1 cm (T1c i više) ili ima zahvaćen aksilarni limfni 

čvor (N1-3) (148). 

 

1.2.4.4. Neoadjuvantno i adjuvantno sustavno liječenje 

Temeljni cilj kemoterapije, bilo poslijeoperacije (adjuvantne) ili prijeoperacijske 

(neoadjuvantne) je eradikacija ili kontrola udaljenih metastaza. Iako randomizirana klinička 

ispitivanja nisu otkrila značajne razlike u dugoročnim ishodima kada se sustavna kemoterapija 

daje prije ili poslije kirurškog zahvata, postoje neke prednosti i potencijalni nedostaci 

neoadjuvantne kemoterapije. Prednosti su snižavanje stadija bolesti i omogućavanje 

operabilnosti ili poštednijeg kirurškog zahvata, dobivanje informacije o djelotvornosti terapije 

i dobivanje vremena za genetsko testiranje. Identifikacijom pacijentica s ostatnom bolešću 

nakon neoadjuvantne terapije omogućuje se postoperativna promjena terapije i uvođenje 

dodatne terapije nakon operacijskog zahvata (173–176). Također, dokazan je prognostički 

značaj odgovora na neoadjuvantnu terapiju. Naime, kod pacijentica kod kojih je postignut 

potpuni patohistološki odgovor (pCR, od engl. pathological Complete Response) dokazan je 

bolji period bez povrata bolesti (eng. Disease Free Survival, DFS) i ukupno preživljenje (engl. 

Overall Surival, OS), a ta je korelacija upravo najbolja za TNBC (177–179). Ipak, neoadjuvantna 

sustavna terapija ima i svoje nedostatke, od kojih je najgori progresija bolesti tijekom 

kemoterapije. Također, moguće je i da se zbog prijeoperacijskog (kliničkog) lažno-višeg stadija 

aplicira kemoterapija kod pacijentica kod kojih prema poslijeoperacijskom (patohistološkom) 

stadiju ista ne bi bila potrebna (eng. „overstaging i overtreatment“). Gledano sa znanstvene 
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strane, posebna prednost neoadjuvantne kemoterapije je dobivanje različitih patohistoloških 

uzoraka (netretiranih i tretiranih sustavnom terapijom) i testiranje novih biomarkera i njihove 

dinamike ovisno o terapiji, kao što smo u ovom istraživanju ispitali AQP3, AQP5, NRF2 i 

FOXO1. U neoadjuvantnom liječenju preferira se nekoliko terapijskih kombinacija, ovisno o 

imunofenotipu tumora.  

Za HER2 pozitivne tumore najčešći je protokol adriamicin+ciklofosfamid (AC) u 4-6 ciklusa 

nakon čega slijedi 12 tjednih ciklusa paklitaksela u kombinaciji s trastuzumabom koji se 

aplicira svaka 3 tjedna. Ukoliko ne postoji rezidualna bolest (pCR), nastavlja se s 

trastuzumabom s ili bez pertuzumaba do ukupno 1 godine terapije. Ukoliko patohistološki 

nalaz pokaže ostatnu bolest (non-pCR) terapija se nastavlja samo s ado-trastuzumab 

emtanzinom. Ukoliko se navedeni lijek mora prekinuti zbog toksičnosti, terapija se nastavlja s 

trastuzumabom ± pertuzumab do ukupno jedne godine terapije. Ukoliko su pri inicijalnoj 

obradi dokazani zahvaćeni limfni čvorovi (>N0)  neoadjuvantno se koristi kombinacija 

trastuzumaba i pertuzumaba.  

Kod HER2 negativnih tumora neoajuvantno se preferira kombinacija AC u 4-6 ciklusa nakon 

čega slijedi 12 tjednih paklitaksela. Kod TNBC pacijentica s BRCA1/2 mutacijom može se 

neoadjuvantno koristiti olaparib (inhibitor PARP-a), a kod pacijentica s TNBC-om visokog rizika 

može se neoadjuvantno koristiti pembrolizumab (blokator PD-1) + karboplatina + paklitaksel, 

nakon čega slijedi preoperativni pembrolizumab + ciklofosfamid + adriamicin/epirubicin, a 

nakon operacije slijedi terapija pembrolizumabom.  Obzirom da su naši uzorci skupljeni prije 

uvođenja pembrolizumaba i karboplatine u neoadjuvantni protokol, pacijentice su prije 

operacije dobile kemoterapiju po shemi 4-6 ciklusa AC + paklitaksel 12 tjedana, a pacijenti s 

HER2 pozitivnim tumorima su uz navedene lijekove dobile bioterapiju trastuzumabom i 

pertuzumabom. U sljedećem poglavlju obrađeni su najčešće korišteni kemoterapijski agensi 

kroz njihov utjecaj na oksidacijski stres.  

 

1.2.4.4.1. Adriamicin 

Adriamicin je antraciklinski antibiotik koji djeluje interkalacijom u DNA i inhibicijom enzima 

topoizomeraza II, što uzrokuje prekide DNA i staničnu smrt (180). Dodatno, adriamicin aktivira 

proizvodnju ROS-a, što pojačava njegov citotoksični učinak. Najčešće nuspojave adriamicina 

su kardiotoksičnost (kardiomiopatija) i kongestivno zatajenje srca (181), mijelosupresija, te 

alopecija, mučnina i stomatitis.  
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Adriamicin inducira oksidacijski stres aktiviranjem mitohondrijskih puteva i NADPH oksidaze, 

generirajući ROS poput superoksidnog aniona, vodikovog peroksida i hidroksilnih radikala 

(182). ROS oštećuju lipide, proteine i DNA te potiču apoptozu, osobito u kardiomiocitima i 

tumorima(183). 

 

1.2.4.4.2. Ciklofosfamid 

Ciklofosfamid je alkilirajući agens koji se u jetri pretvara u aktivne metabolite, uključujući 

fosforamidni iperit i akrolein, koji tvore DNA-adukte i dovode do stanične smrti(184). Akrolein 

je izuzetno reaktivan aldehid koji inducira oksidacijski stres interakcijom s lipidima staničnih 

membrana, smanjenjem razine glutationa (GSH) i inhibicijom antioksicijskih enzima 

superoksid dismutaze (SOD) i glutation peroksidaze (GPx) (185). 

 

1.2.4.4.3. Paklitaksel 

Paklitaksel je taksan koji stabilizira mikrotubule, što uzrokuje mitotski arest i apoptozu (186). 

Paklitaksel povećava koncentraciju ROS povećanjem aktivnosti NADPH oksidaze vezane za 

plazmatsku membranu (187) 

 

Istraživanja na jetri štakora pokazala su da je oksidacijski stres izazvan kombinacijom 

kemoterapijskih agenasa (adriamicin i paklitaksel) značajno veći u odnosu na pojedinačne 

agense (188). Dokazano je da tijekom liječenja kombinacijom adriamicina, ciklofosfamida i 

paklitaksela tumori višeg stadija pokazuju značajniji porast markera oksidacijskog stresa. Ova 

kemoterapijska shema dokazano povisuje razinu malondialdehida, markera lipidne 

peroksidacije, i snižava antioksidacijsku zaštitu (189). 

 

1.3. Oksidacijski stres 

Oksidacijski stres, odnosno neravnoteža u staničnoj redoks homeostazi, važan je čimbenik 

razvoja različitih bolesti (190). Do ove neravnoteže može doći zbog smanjene antioksidacijske 

obrane ili zbog povećane proizvodnje reaktivnih kisikovih vrsta (ROS, engl. Reactive Oxygen 

Species) (191). ROS su reaktivne vrste koje sadrže kisik, a mogu biti ili radikali poput 

hidroksilnog ili superoksidnog radikala ili molekule poput vodikovog peroksida (H2O2) (192). 

U početku se oksidacijski stres smatrao stresnim i štetnim stanjem(193,194). Danas se 

oksidacijski stres smatra promijenjenom ravnotežom koja može imati pozitivne ili negativne 
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posljedice (195). Ove dvije opcije se označavaju kao eustres i distres, gdje je distres štetan 

stres s mogućim smrtonosnim posljedicama, a eustres je hormeza, odnosno adaptivni biološki 

odgovor na stresno stanje (196,197).  

Blagi oksidacijski stres, izraz koji se odnosi na niske razine ROS-a, vrlo je koristan jer stimulira 

obrambene mehanizme. Stanice imunološkog sustava proizvode ROS u višim koncentracijama 

kao obrambene agense protiv patogena (198–200). ROS u niskim koncentracijama sudjeluju 

u prijenosu signala i u kontroli ekspresije gena vezanih uz staničnu proliferaciju, diferencijaciju 

i preživljavanje (201). Prema tome, blaže oscilacije oksidacijskog stresa su poželjne, izazivajući 

prilagodbu na okolišni stres izgradnjom staničnog antioksidacijskog obrambenog 

sustava(202). Povećanje oksidacijskog stresa i ulazak u “umjereni” oksidacijski stres aktivira 

čitav niz različitih proteina, potičući upalu i mijenjajući ekspresiju citokina i kemokina (203). 

Jako visoke koncentracije ROS-a mogu uzrokovati oštećenje proteina, nukleinskih kiselina, 

lipida, membrana i organela, što može dovesti do aktivacije apoptoze (204). ROS su vrlo 

reaktivne i uzrokuju oksidaciju svih staničnih makromolekula, DNA, proteina i lipida (205). ROS 

uzrokuju jednolančane i dvolančane lomove DNA i oksidiraju baze što rezultira mutacijama. 

Ukoliko obim oštećenja ne uzrokuje staničnu smrt, ova oštećenja DNK uzrokuju deaktivaciju 

ili prekomjernu ekspresiju gena koji reguliraju staničnu ciklus i dovode do razvoja tumora. 

Oksidacija proteina remeti njihovu funkciju(206).  Lipidi su osjetljivi na peroksidaciju koja 

uzrokuje smrt stanice zbog poremećaja fizikalnih barijera stanice. Za razliku od mutacija DNA 

i oksidacije proteina, peroksidacija lipida je autokatalitički proces koji umnožava i proširuje 

oštećenje (207). Posebno osjetljive na peroksidaciju lipida su višestruko nezasićene masne 

kiseline (PUFA, engl. PolyUnsaturated Fatty Acids) zbog dvostrukih veza koje su vrlo reaktivne 

s ROS. Peroksidacija lipida je autokatalitički proces koji također rezultira stvaranjem visoko 

reaktivnih aldehida, a mogu ga zaustaviti antioksidansi (207). Reaktivni aldehidi dovoljno su 

stabilni da difundiraju s ishodišta i dalje djeluju na s proteine, modificirajući tako njihovu 

reaktivnost i funkciju, što u konačnici utječe na stanične procese (207–209). 

ROS fiziološki nastaje u mitohondrijima, gdje dolazi do „curenja“ elektrona s transportnog 

lanca elektrona i formira se superoksidni anion (210). ROS mogu nastati i u peroksisomima 

oksidacijom masnih kiselina (211), a u endoplazmatskom retikulumu putem oksidacije 

proteina (212). Izlaganje vanjskima agensima (zračenje, teški metali, atmosferski onečišćivači, 

kemoterapijski agensi) također dovodi do povećanog stvaranja ROS-a (213). 
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Iako se antioksidansi često percipiraju kao protutumorski agensi, neka klinička ispitivanja i 

eksperimentalni modeli pokazuju da dodaci prehrani s antioksidansima, osobito 

karotenoidima i vitaminom E, mogu povećati učestalost raka i smrti povezane s rakom kod 

ljudi (214–218). 

   

1.3.1. Regulacija antioksidacijske zaštite 

Kako bi se razina ROS-a održala na fiziološkoj razini, ali i kao zaštita od oksidacijskog stresa, 

stanice su razvile mehanizme za strogu regulaciju razina ROS. Ovi zaštitni mehanizmi temelje 

se na složenom sustavu eliminacije koji sadrži niz enzima poput superoksid dismutaze (SOD), 

katalazu, tioredoksine, peroksiredoksine i glutation peroksidaze (219,220), ali i male 

antioksidacijske molekule kao što su glutation (GSH), tioredoksini, peroksiredoksini, vitamin 

C (askorbat), vitamin E (tokoferoli) i polifenoli. Neenzimatski antioksidansi, mogu djelovati  

izravno na ROS i druge prooksidativne agense (221). 

Pozitivni učinci blagog stresa uključuju signalni put NRF2/KEAP1. NRF2 je transkripcijski faktor 

koji se u nestimulirajućim uvjetima nalazi u citoplazmi vezan za KEAP1. U kompleksu s KEAP1, 

NRF2 biva ubikvitiniran Cul3-ubikvitin E2 ligazom, čime se upućuje na degradaciju u 

proteasomu. Ako su ROS ili elektrofili prisutni u povišenim koncentracijama u stanici, oni 

oksidiraju KEAP1, što mijenja njegovu konformaciju te on djelomično otpušta NRF2. 

Novonastali NRF2 se tada translocira u jezgru i veže se za mali MAF protein i inducira 

transkripciju antioksidacijskih gena. Ciljni geni NRF2 uključeni su u sintezu glutationa 

(glutamat-cistein ligaza, obje, katalitička i modificirajuća podjedinica), u detoksikaciji ROS 

(tioredoksin reduktaza 1, peroksiredoksin 1), detoksikaciji ksenobiotika (NQO1, NAD(P)H 

kinon dehidrogenaza 1, glutation- S-transferaza), ali i u transportu lijekova (protein s 

rezistencijom na multiple lijekove, MRP) (222).  

Osim toga, antioksidacijskoj zaštiti doprinose i FOXO proteini (223). Među antioksidacijskim 

genima koje aktivira obitelj FOXO su katalaza, superoksid dismutaza ovisna o manganu 

(MnSOD), protein 1 koji veže oštećenje DNA (DDB1), Fas ligand (FasL), ciklin ovisna kinaza B1 

(KIP1, p27) i ABC transportni protein, ABCC1 (224). 

I NRF2 i oibtelj FOXO regulirani su signalnim putem PI3K/AKT (223,225). NRF2 se može 

aktivirati izravno pomoću PI3K, ali i neizravno, 4-hidroksinonenalom (HNE) koji aktivira 

atipičnu protein kinazu C (PKC) i ERK (225–227). PI3K negativno regulira obitelj FOXO, dok JNK 
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služi kao pozitivni regulator tako što po primanju stresnog signala fosforilira FOXO i tako ih 

aktivira (223). Za razliku od NRF2, učinci aktivacije FOXO ovise o težini stresa - ako su razine 

stresa niske, aktiviraju se antioksidacijski obrambeni mehanizmi, a ako su razine visoke, 

aktivira se apoptoza (228). 

 

1.3.2. Oksidacijski stres i antioksidacijska zaštita kod raka 

ROS zajedno s brojnim adaptacijskim odgovorima stanice imaju značajnu ulogu u inicijaciji i 

progresiji raka te rezistenciji na lijekove (229–231). ROS su u tumorskim stanicama povišene i 

zbog aberantnog energetskog metabolizma. Povećana razina ROS-a povezana je s aktivacijom 

onkogena, inaktivacijom tumor-supresorskih gena i oštećenjem mitohondrija (232). Stoga je 

prilagodba na oksidacijski stres značajan faktor nastanka rezistencije na terapiju. Stanice raka 

istovremeno s porastom ROS-a povećavaju i svoje antioksidacijske kapacitete. Na taj način 

stanice raka optimiziraju proliferaciju potaknutu ROS-om i izbjegavaju pragove ROS-a koji bi 

inače izazvali apoptozu (233,234). Stanice raka koriste ROS kao proliferacijski signal i putem 

samo-katalizirane lančane reakcije lipidne peroksidacije PUFA. Snažno inducirana 

peroksidacija PUFA stvara reaktivne aldehide, molekule koje su mnogo stabilnije od samih 

ROS. Stoga se smatraju "drugim glasnicima" ROS-a (235) 

Nedavno se pokazalo da je oštećenje genoma pokretač upalne signalne kaskade koja rezultira 

otpuštanjem proupalnih čimbenika i povećanjem količine infiltrirajućih imunoloških stanica. 

Ti događaji dodatno pridonose proizvodnji ROS-a i dovode do pojave začaranog kruga 

karcinogenog oksidacijskog stresa (236). Oštećenje DNA izaziva aktivaciju imunološkog 

sustava i upalu, te lučenje proupalnih čimbenika posredovanih aktivacijom cGAS-STING puta, 

ZBP1 patogenog senzora, AIM2 i NLRP3 inflamasoma. Odgovor na oštećenje DNA također 

može pokrenuti mehanizme za ograničavanje diobe oštećenih progenitorskih stanica 

induciranjem trajnog stanja aresta staničnog ciklusa (senescentnost). Trajno oštećenje DNA 

potiče senescentne stanice na izlučivanje raznih faktora koji mogu djelovati kao jaki 

imunološki modulatori. Oslobađanje specifičnih citokina može stimulirati plastičnost i 

regeneraciju tumorskih matičnih stanica i tako potaknuti progresiju tumora (236). Ipak, trajni 

oksidacijski stres povećava osjetljivost tumorskih stanica i može dovesti do ponovne 

osjetljivosti na terapiju. Stoga, oksidoreducijske promjene mogu igrati značajnu ulogu u 

protutumorskoj terapiji (191). Na primjer, kod signalnog puta inzulin/faktor rasta, vezanje 
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liganda na srodne receptore stimulira proizvodnju superoksidnog aniona pomoću NOX ( 

NADPH oksidaze) koji su u blizini, što rezultira prolaznim povećanjem H2O2 koje dalje uzrokuje 

reverzibilnu inaktivaciju protein tirozin fosfataze (npr. PTP1B, PTPN2 i PTPN11) i lipidne 

fosfataze PTEN. Inaktivacija ovih enzima omogućuje kratkotrajni prekid represije signalizacije 

inzulina/faktora rasta i povećanu aktivnost različitih nizvodnih enzima protein kinaze 

aktivirane mitogenom (MAPK), što dovodi do stanične proliferacije (237). 

Stanice, pa tako i stanice raka, na pretjeranu proizvodnju ROS-a odgovaraju aktivacijom 

nekoliko transkripcijskih programa. Ti se transkripcijski programi oslanjaju na transkripcijske 

faktore/njihove partnere za vezanje koji sadrže cisteine koji reagiraju na redoks. Ovi programi 

uključuju članove obitelji Forkhead Box Protein O3 (FOXO), hipoksija inducibilni faktori (HIFs), 

KEAP1 s NRF2 i TP53 transkripcijski program (238–241).  

 

1.3.3. Akvaporini 

Homeostaza vode jedan je od najvažnijih faktora u fiziologiji stanice. Iako se prvotno smatralo 

da voda ulazi u stanice kroz membranu isključivo difuzijom, danas se zna da voda kroz staničnu 

membranu prolazi u oba smjera kontrolirano, kroz specijalizirane pore nazvane akvaporinima 

(AQP) (242). Prolaz vode kroz AQP zahtijeva nižu energiju aktivacije u odnosu na prolaz kroz 

lipidni dvosloj. AQP pripadaju visoko konzerviranoj skupini membranskih proteina te se dijele 

na: ortodoksne ili klasične (AQP0, AQP1, 

AQP2, AQP4, AQP5, AQP6, i AQP8), koji primarno služe za transport vode; gliceroakvaporine 

(AQP3, AQP7, AQP9, i AQP10), primarno za glicerol, ali i vodu i druge male polarne spojeve; i 

S-akvaporine (AQP11 i AQP12), koji se nazivaju i neortodoksnim akvaporinima, koji su locirani 

isključivo unutar stance (243). U sisavaca AQP-i također imaju važnu ulogu u metabolizmu 

energije. Kontrolirajući koncentraciju glicerola u epidermisu, masnom tkivu i drugim tkivima, 

akvagliceroporini sudjeluju u hidrataciji kože, proliferaciji stanica, karcinogenezi i 

metabolizmu masti (244). Stoga su AQP postali potencijalne ciljne molekule u liječenju edema 

mozga, pretilosti, cijeljenja rana, tumora i drugih bolesti (245)(246).  Uzevši u obzir funkciju 

akvaporina i činjenicu da tumorske stanice metabolizam najčešće temelje na glikolizi, a 

migracijsku sposobnost na lamelopodijima koje kontroliraju AQP (242), ne iznenađuje da su 

AQP aberantno izraženi u tumorskom tkivu i pozitivno koreliraju s agresivnošću tumora, 

progresijom raka i metastaziranjem(242,247). Povišena ekspresija AQP otkrivena je u 
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tumorima različitog porijekla, a povezana je s rastom tumora, angiogenezom, migracijom 

stanica i proliferacijom, sugerirajući da bi AQP-i mogli imati dijagnostičku i prognostičku 

vrijednost te da bi se njihova modulacija mogla ispitati u liječenju tumora (248). Posebno se 

ističu AQP1, AQP3 i AQP5 koji su povišeni u različitim tumorima, a uključeni su u proliferaciju 

i migraciju (246).  

 

Akvaporini mogu transportirati i vodikov peroksid, što je izuzetno važno zbog njegove uloge 

u biološkim procesima i signalizaciji (247). Stoga su definirani "peroksiporini" - akvaporini koji 

olakšavaju protok vodikovog peroksida. Peroksiporini se nalaze u sve tri prethodno navedene 

skupine: AQP0, AQP1, AQP3, AQP5, AQP8, AQP9 i AQP11 (247). 

Akvaporini su evolucijski visoko očuvani transmembranski kanali izgrađeni kao tetrameri, pri 

čemu se svaki monomer sastoji od oko 320 aminokiselina i molekularne je težine 28 kDa (249). 

Svaki monomer ima šest transmembranskih domena povezanih s pet petlji (A-E) (250). 

Regulacijske sekvence akvaporina nalaze se u petlji E, koja sadrži vezna mjesta za inhibitore, 

Hg+ i tetraetilamonij, i petlji D, koja je osjetljiva na protonaciju, čime regulira protok kroz pore 

(251). Za razliku od ionskih kanala gdje je kanal centralno smješten, svaki monomer 

akvaporina je zaseban kanal i reguliran neovisno o drugim monomerima. Središte tetramera 

je također kanal za koji se pretpostavlja da je propustan za plinove, poput CO2, NO i pojedinih 

iona, a koja će od ovih vrsta prolaziti ovisi posebno o svakom akvaporinu (Slika 4) (252–254).  
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Slika 4. Struktura akvaporina. Četiri monomera s četiri kanala te kanalom u sredini. Preuzeto 

iz NIH 3D. (2014).(255) 

 

 

Transkripcijska regulacija akvaporina još nije u potpunosti istražena, ali AQP3 ima nekoliko 

odgovornih elemenata i veznih mjesta transkripcijskih faktora u regiji promotora, kao što je 

ERE (engl. Estrogen Response Element), RORE (engl. ROR/REV-ERB- Response Element), vezno 

mjesto za SP1 i za FOXO1 transkripcijske faktore (256). U žlijezdama slinovnicama pokazalo se 

da je FOXO1 izravni regulator ekspresije AQP5(257). Dodatno, inzulin može pojačati ekspresiju 

AQP1, AQP5 i AQP8 u submandibularnim žlijezdama dijabetičkih štakora(258). Ovi podaci 

ukazuju na to da se akvaporini mogu regulirati različitim podražajima koji dodatno ostvaruju 

zaštitne učinke na ciljanu stanicu. Akvaporini se reguliraju posttranslacijski, gdje se akvaporini 

smještaju u vezikule i prililkom potrebe za njihovom aktivnošću dolazi do transporta vezikula 

i spajanja sa staničnom membranom (259). Ovakav promet ovisi o fosforilaciji monomera, 

npr. AQP2 treba imati fosforilirana najmanje tri monomera za određivanje svog položaja u 

membrani plazme (260). U stanicama raka prostate, PC-3, AQP3 se translocira iz citoplazme u 
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staničnu membranu nakon utišavanja RAS like protoonkogena A (261). RAS-u sličan 

protoonkogen A (eng. Ras-related protein Ral-A). 

Regulacija protoka kroz kanal naziva se „gating“ i reguliran je pH, fosforilacijom, 

temperaturom, napetošću membrane, gradijentom tekućine i tlakom(262–264). Ortodoksni 

akvaporini najbrže odgovaraju na podražaje promjenom propusnosti. Razlog stvaranja 

tetramera nije jasan, budući da svaki monomer funkcionira neovisno o drugom te nema 

dokaza o kooperativnoj ovisnosti u kvarternoj strukturi (265). 

Akvaporini kontroliraju kretanje vode kroz membranu, ali također kontroliraju osmotski tlak 

regulacijom unutarstanične koncentracije glicerola (266). Kontrola kretanja vode i osmotskog 

tlaka nadalje je povezana s njihovim ulogama u stanici, kao što su migracija, proliferacija i 

adhezija(248). Tijekom migracije akvaporini selektivno transportiraju vodu zahvaljujući 

osmotskom gradijentu koji se postiže depolarizacijom aktina. Voda ulazi u stanicu na 

„vodećem“ mjestu uzrokujući lokalno širenje membrane koje se zatim kompenzira 

remodeliranjem aktina radi održavanja integriteta membrane (267). Mehanizam kojim 

akvaporini doprinose staničnoj proliferaciji nije jednostavan niti je isti za svaki akvaporin. 

Naime, inhibicija AQP1 inhibira proliferaciju i migraciju HT29 stanica, koje imaju visoku 

bazalnu ekspresiju AQP1, dok ova inhibicija ne utječe na HCT116 stanice s niskom ekspresijom 

AQP1(268). AQP3 je također povezan sa staničnom proliferacijom - kod stanica raka želuca 

SGC7901 i MGC803 dokazana je korelacija prekomjerne ekspresije AQP3 i povećane 

proliferacije, dok je njegova down-regulacija imala suprotan učinak (269). Uzimajući da je kod 

raka želuca APQ3 značajno viši nego u normalnoj želučanoj sluznici i da je povezan s 

proteinima EMT u tkivu raka želuca, prekomjerna ekspresija AQP3 povezana je s lošijom 

prognozom ovih pacijenata. Stoga je kod raka želuca pojačana regulacija ova dva akvaporina 

povezana s malignijim fenotipom, što se postiže aktivacijom ERK i Ras, kao i PI3K/AKT/Snail 

signalnog puta(269,270). U matičnim stanicama raka pluća utišavanje AQP3 uzrokovalo je 

pojačanu aktivnost puta Wnt/GSK-3/β katenin , što ukazuje na njegovu ulogu u smanjenju 

aktivnosti ovog signalnog puta i, prema tome, inhibiciji apoptoze i smanjenju diferencijacije 

stanica raka pluća, zadržavajući matični fenotip ovih stanica (271). Navedene uloge AQP3 

omogućuju korištenje APQ3 za određivanje malignog potencijala i rizika povrata bolesti (271).  

Razna istraživanja pokazala su povišenu ekspresiju AQP-a u raku dojke, uglavnom AQP1, AQP3 

i AQP5, za razliku od normalnog okolnog tkiva (272). Kod HER2 pozitivnih tumora, lošija 
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prognoza vezana je uz povišenu ekspresiju AQP3 (273), dok su AQP1 i i AQP5 neovisni 

prognostički pokazatelji preživljavanja pacijenata s rakom dojke(274).  

Budući da liječenje raka dojke vrlo često započinje neoadjuvantnom kemoterapijom 

temeljenom na antraciklinima i taksanima, za koje je poznato da izazivaju oksidacijski stres, 

za ovo istraživanje je izabrana dinamika akvaporina 3 i 5, obzirom na njihovu sposobnost 

transporta vodikovog peroksida i dokazanu ulogu u razvoju karcinoma dojke. 

 

1.3.3.1. Akvaporini, oksidacijski stres i rak  

Kao što je već opisano, jedan od mogućih mehanizama pomoću kojih akvaporini ostvaruju 

svoju ulogu u proliferaciji, diferencijaciji i apoptozi je regulacija transporta malih molekula kao 

što su vodikov peroksid (H2O2), dušikov oksid (NO), urea i CO2(252,262,275). Budući da H2O2 i 

NO reguliraju i moduliraju redoks signalne putove, čime se regulira proliferacija, 

diferencijacija i apoptoza, regulacija unosa ovih molekula može izravno ili neizravno 

doprinijeti modulaciji ovih procesa što rezultira rastom i razvojem tumora. Čimbenici koji 

reguliraju oksidacijski stres uvelike utječu na razvoj tumora kao i na njegovu sudbinu. 

Zanimljivo je da su ovi zaštitni faktori u mnogim slučajevima zapravo dvosjekli mač. Ovo se 

posebno odnosi na NRF2, jedan od ključnih transkripcijskih faktora antioksidacijskog 

obrambenog sustava. U normalnim stanicama NRF2 induciranom transkripcijom nastaje niz 

reakcija koji štiti stanicu od maligne transformacije, dok u tumorskim stanicama NRF2 dovodi 

do zaštite od terapije(222,276). Dodatno, put NRF2 utječe i potiče karcinogenezu ne samo 

izravno aktivacijom u tumorskim stanicama, već i neizravno, u stromi, preko fibroblasta 

povezanih s rakom (eng. Cancer Associated Fibroblasts, CAF). Tumorske stanice stupaju u 

interakciju sa normalnim, netransformiranim stanicama u svom mikrookruženju, mijenjajući 

normalne fibroblaste u CAF koji su reprogramirani da podržavaju rast tumora. 

Reprogramiranje CAF-a događa se aktivacijom p62, koji zatim usmjerava KEAP1 na lizosomsku 

razgradnju (277). Degradacija KEAP1 aktivira NRF2 i pojačava transkripciju ATF6 konačno 

posredujući ER (endoplazmatski retikulum) odgovor na stres. Dokazi također sugeriraju da 

FOXO, supresor tumora, može aktivirati mehanizme otpornosti tumora, ali to se može 

dogoditi samo u kombinaciji s drugim događajima u stanici (223). 

U svjetlu antioksidacijske obrane koja djeluje kao dvosjekli mač, akvaporini uvode novi 

moment reguliranjem protoka H2O2. Delikatna regulacija intracelularne razine H2O2 otvara 

mogućnosti u stimulaciji proliferacije i mehanizma preživljavanja tumorskih stanica, što 
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dovodi do otpornosti i povećane mobilnosti. Utvrđeno je da su akvaporini pojačano izraženi 

u brojnim tumorima(278–280) što otvara mogućnosti za njihovo terapijsko ciljanje kod 

tumora. Točni mehanizmi i signalni putovi na koje utječu akvaporini još se trebaju utvrditi, ali 

to nije jednostavna i izravna interakcija. Povećana prisutnost određenog akvaporina u 

staničnoj membrani kontrolira protok H2O2, kao i protok vode i drugih malih molekula. Uvoz i 

izvoz ovih malih molekula, osim vode i H2O2, također može modificirati signalne putove 

uključene u proliferaciju, diferencijaciju i migraciju. Uz to, unos glicerola također bi mogao biti 

jedan od čimbenika pomoću kojih akvaporini potiču proliferaciju (279). Zbog njihovih 

svojstava, AQP3 i AQP5 (gliceroakvaporin i ortodoksni akvaporin) su akvaporini istraživani kod 

raka dojke, a njihova je dinamika i jedan od predmeta ovog istraživanja. 

 

1.3.3.2. AQP3 i rak dojke  

AQP3 pripada akvagliceroporinima i kao takav olakšava transport glicerola i vode (281,282). 

Iako neki autori navode da je AQP3 slab vodeni kanal (271), u bubregu je AQP3 konstitutivno 

aktivan zajedno s AQP4 (282) čime regulira izlučivanje vode. Nakon fizioloških uloga, njegova 

uloga prepoznata je i kod raka kože (242), a kasnije i kod drugih vrsta raka, uključujući rak 

dojke (283–285). Analiza genomskih podataka iz projekta The Cancer Genome Atlas (TCGA) 

koji je besplatno dostupan na web-portalu UALCAN (286) otkrila je uzorak AQP3 u normalnom 

(medijan 31,64 transkripata na milijun (TPM) u odnosu na različite podklase raka dojke 

(luminalni podtip–16,183 TPM, HER2-pozitivni podtip -36,481 TPM, TNBC-13,484 TPM). 

Nakon što je prepoznato da je prekomjerno izražen kod raka, AQP3 je istraživan kao mogući 

prognostički marker za trostruko negativni tumor dojke, zajedno s AQP5 (287), kao i za HER2 

pozitivan rani rak dojke (273). Paralelno, pokazano je da gen AQP3 ima element odgovora na 

estrogen i reagira na podražaje estrogena povećavajući svoju ekspresiju (288), što ukazuje na 

vezu između AQP3 i ER+ raka dojke. Mogućnost korištenja AQP3 kao prognostičkog markera 

u raku dojke može se pripisati njegovoj ulozi u migraciji stanica, koja je olakšana 

kanaliziranjem vode i glicerola te posljedičnim stvaranjem lamelopodija (288,289). Studije su 

potvrdile da prekomjerna ekspresija AQP3 povećava migraciju i invaziju ER+ stanica raka dojke 

(288) i keratinocita (289). Nadalje, u keratinocitima, AQP3 također olakšava transport 

glicerola u stanicu, što rezultira stvaranjem ATP-a (290). Činjenica da AQP3 olakšava transport 

vode, glicerola i H2O2 stavlja AQP3 visoko na popisu potencijalnih meta u terapiji tumora.  
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Važno je razjasniti signalne putove i stanične procese na koje utječu promjene u razinama 

AQP3. Transport vode i glicerola utječe na migraciju i metaboličke procese (osobito 

metabolizam lipida), a H2O2 utječe na signalne putove. H2O2 pokreće nekoliko signalnih 

putova u stanici, a kanal koji može olakšati transport H2O2 potencijalni je kandidat koji 

osigurava određenu razinu kontrole nad tim putovima. U prilog ovoj pretpostavci ide studija 

Hara-Chikuma i sur. (291) pokazujući u keratinocitima da je stimulans TNF-a olakšan 

proizvodnjom H2O2 pod utjecajem NADPH oksidaze izoforme 2 (NOX2). AQP3 zatim prenosi 

H2O2 što rezultira regulacijom (inhibicijom) proteinske fosfataze 2A i aktivacije nuklearnog 

faktora kapa B (NF-kappaB). Štoviše, CXCL12 stimulira transport H2O2 kroz membranu putem 

AQP3 u stanicama raka dojke MDA-MB-231 i DU4475 (292). Oksidacija PTEN/PTP1B događa 

se zbog H2O2, nakon čega slijedi aktivacija AKT puta i  migracija stanica. Isključivanje AQP3 

onemogućava ovaj proces i time potvrđuje ulogu AQP3 u migraciji (292).  

 

Potreba za proučavanjem putova na koje utječe prekomjerna ekspresija AQP3 i mehanizama 

djelovanja ogleda se u nalazu da je Auphen, inhibitor akvaporina koji sadrži zlato, učinkovitije 

blokirao transport glicerola (oko 90% inhibicije) u odnosu na transport vode (20% inhibicije) 

(293). Imajući na umu da AQP3 također olakšava transport H2O2 kroz plazma membranu 

(294,295) i strukturne sličnosti između H2O2 i vode (296), inhibitore treba pažljivo ispitati u 

pogledu njihove sposobnosti da blokiraju sve tri molekule kanalizirane preko AQP3. Činjenica 

da inhibitor može nejednako blokirati transport glicerola i vode upućuje na to da transport 

H2O2 također može biti pod slabijim utjecajem, sugerirajući aktivaciju i modifikaciju staničnih 

procesa u neželjenom smjeru, odnosno prema progresiji tumora. Postoji nekoliko radova o 

učinku akvaporina općenito na antioksidacijski obrambeni sustav, posebno transkripcijski 

faktor NRF2, neovisno o bolesti(297–299). U staničnim linijama raka dojke, MCF7, SUM159 i 

SkBr3, AQP3 je bio najizraženiji akvaporin, a u HER2 pozitivnim stanicama bio je pojačano 

reguliran zajedno s NRF2 pomoću H2O2 (297), što ukazuje na potrebu proučavanja učinaka 

prekomjerne ekspresije AQP3 u odnosu na dijelove antioksidativnog sustava. 

 

1.3.3.3. AQP5 i rak dojke  

AQP5 je uključen u normalan razvoj dojke i proizvodnju mlijeka, kao i u karcinogenezu dojke 

(283,300). Jung i sur. pokazali su da utišavanje AQP5 ili indukcija hiperosmotskog stresa 

stanicama MCF-7 smanjuje ekspresiju AQP5 i negativno utječe na staničnu proliferaciju i 
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migraciju. Osim toga, ekspresija AQP5 u benignim tumorima i invazivnom duktalnom 

karcinomu pokazala je različite obrasce- u duktalnim epitelnim stanicama dokazana je 

ekspresija AQP5 u apikalnim domenama, dok je u tumorskim stanicama ekspresija bila 

povećana, ali je pronađen gubitak apikalnog polariteta, što ukazuje na ulogu AQP5 u progresiji 

raka dojke (301). Kod TNBC, primijećena je značajno veća ekspresija AQP5 i AQP3 u 

tumorskom tkivu nego u okolnom normalnom tkivu. Prekomjerna ekspresija AQP5 uglavnom 

je primijećena u uzorcima TNBC-a s visokim proliferacijskim indeksom Ki-67 i, zajedno s višom 

ekspresijom AQP3, povezana je s agresivnijom bolešću s lošijim ukupnim preživljenjem, 

sugerirajući njihovu zajedničku ekspresiju kao neovisni prognostički marker kod trostruko 

negativnog tumora dojkea (287). Prekomjerna ekspresija AQP5 bila je povezana s lošijim 

ishodima kod pacijenata s ranim rakom dojke bez obzira na tip i stadij tumora, što ukazuje na 

to da bi AQP5 mogao biti neovisni prognostički marker preživljenja, osobito kod kurativno 

operiranih pacijentica s hormonski pozitivnim tumorima(274). Analiza genomskih podataka iz 

projekta TCGA sa web-portala UALCAN otkrila je značajno različite obrasce ekspresije gena 

AQP5 u normalnim stanicama u odnosu na različite podtipove raka dojke (286). 

U studiji Rodrigues i sur. (297) ispitan je utjecaj oksidativnog stresa na profil lipida, razine 

medijatora oksidativnog stresa i NRF2, obrasce ekspresije AQP1, AQP3, AQP5 i osjetljivost na 

H2O2 u tri stanične linije raka dojke (koje predstavljaju hormon-pozitivne (MCF-7), HER2-

pozitivne (SkBr-3) i TNBC (SUM 159)). Razine PUFA ovisne su o tipu stanice, a najviše su bile u 

trostruko negativnoj staničnoj liniji SUM 159 u kojoj je pronađena i niža razina NRF2, što može 

objasniti veću osjetljivost trostruko negativnih stanica na H2O2. Obrazac ekspresije AQP-a 

također je bio specifičan za tip stanice. Dok je AQP3 bio najizraženija izoforma u svim 

testiranim staničnim linijama, izloženost H2O2 povećala je ekspresiju AQP3 u stanicama MCF-

7 i SkBr-3, dok je u SUM 159 stanica razina AQP3 smanjena. Ekspresija AQP5 i AQP1 bila je 

slična u SUM 159 i SkBr-3, s povećanjem nakon oksidativnog izazova, dok je u MCF-7 

stanicama bila snižena(297). 

Studija Rodriguesa i sur. pokazala je da AQP5, osim vode, vrlo učinkovito provodi i H2O2. 

Migracijska sposobnost stanica suprimirana je utišavanjem AQP5, a potom restituirana 

vanjskim podražajima oksidativnog stresa. Stoga su autori istaknuli ulogu AQP5 u dinamičkom 

finom podešavanju unutarstaničnih razina H2O2(302), koje su važne za redoks signalizaciju i 

regulaciju sudbine stanice (303). Stoga bi AQP5 mogao imati značajnu ulogu u terapiji raka. 
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Otkriće triju miRNA (miR-1226–3p, miR-19a-3p i miR-19b-3p) koje reguliraju AQP5 

smanjenjem njegove translacije, što dovodi do smanjene migracije stanica raka dojke, 

podupire daljnje istraživanje AQP5 kao moguće terapijske mete kod raka dojke (304).  

Povezanost ROS-a i AQP5 također je promatrana u studiji Oh et al. Proučavali su utjecaj 

hiperkolesterolemije i inhibicije ksantin oksidaze (enzim koji stvara ROS) na progresiju raka 

dojke in vitro i na modelu ksenografta miša. Pokazalo se da hiperlipidemijska stanja pridonose 

proizvodnji ROS-a, progresiji raka dojke i aktivaciji MAPK-a. Liječenje febuksostatom, 

inhibitorom ksantin-oksidaze, rezultiralo je smanjenjem razina ROS-a i ekspresije AQP5, 

ublažilo proliferativnu i migracijsku sposobnost stanica raka dojke, kao i plućne 

metastaze(305). Za sada još nije sigurno da li je uključenost AQP5 u karcinogenezu dojke 

uzročna ili samo posljedica metaboličkog reprogramiranja i redoks signalizacije putem H2O2. 

Zaključno, AQP3 i AQP5 povišeni su u raku dojke i podržavaju procese koji dovode do rasta i 

metastaza raka dojke. Sadašnja saznanja pokazuju da su ova dva akvaporina potencijalni 

biomarkeri zloćudnosti raka dojke što ih čini potencijalnim terapijskim ciljevima. Za siguran 

terapijski pristup potrebno je temeljito proučiti sve moguće putove utjecaja akvaporina, 

budući da bi neadekvatna inhibicija ili stimulacija svakog AQP-a mogla dovesti stanice raka do 

zloćudnijeg fenotipa. Jedan od važnih aspekata svakako je umreženost akvaporina s 

antioksidacijskim sustavom, posebno zbog sposobnosti AQP3 i AQP5 u kanaliziranju H2O2, koji 

tada igra aktivnu ulogu u signalnim putovima.  
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1.3.4. NRF2 

NRF2 je glavni antioksidacijski transkripcijski faktor, koji se veže na ARE (od engl. Antioxidant 

Response Element) u promotoru gena te tako aktivira njihovu transkripciju. NRF2 aktivira 

transkripciju gena za citoprotektivne proteine, uključujući komponente antioksidacijskog 

sustava, protuupalne proteine, enzime za detoksikaciju, kao i proteine koji pomažu u 

popravku ili uklanjanju oštećenih makromolekula (306–308). Aktivacija signalnog puta NRF2 

daje stanicama stratešku prednost u preživljavanju nepovoljnih uvjeta i različitih stresora. 

NRF2 suprimira i proupalne citokine te tako regulira stanični odgovor na upalu. Uz to, NRF2 

sudjeluje u kontroli ključnih staničnih procesa, poput apoptoze, autofagije, angiogeneze, 

proliferacije i migracije stanica (309). 

Dokazano je da povećana aktivnost NRF2 povećava otpornost tumorskih stanica na 

uobičajene kemoterapijske agense i zračenje (310,311). Kod nekoliko tipova raka dokazana je 

visoka razina aktivnosti NRF2 koja je odgovorna za visoko proliferativni fenotip (312) i početak 

procesa metastaziranja (313). NRF2 se pokazao kao čimbenik i u stanicama tumorskog 

mikrookoliša (eng. tumor microenvironment - TME), odnosno strome. Odnos između 

tumorskih i stromalnih stanica je dvosmjeran: stanice raka izlučuju nekoliko čimbenika koji 

potiču stanice strome na izlučivanje drugih topljivih molekula, a zauzvrat, one modificiraju 

metabolizam i redoks potencijal stanica raka (314). NRF2 bi mogao igrati ulogu u ovoj 

interakciji, budući da je u stromi zloćudnijih tipova raka dojke dokazano povišen, za razliku od 

strome manje malignih tipova (315). Stoga se inhibicija NRF2 razmatra kao terapijska opcija 

koja bi mogla biti učinkovita u liječenju raka, ciljajući na preživljavanje i proliferaciju tumorskih 

stanica, ali i suzbijanje rezistencije (316). 

 

1.3.4.1. Struktura i regulacija NRF2 

Transkripcijski faktor NRF2 kodiran genom NFE2L2, član je obitelji transkripcijskih faktora 

Cap‘n’collar (CNC). NRF2 se sastoji od 605 aminokiselina organiziranih u sedam visoko 

konzerviranih funkcionalnih domena Neh1-Neh7 (engl. NRF2-ECH Homology 1–7) (309,317). 

Neh1 domena je DNA-vezujuća domena koja sadrži i signal za nuklearnu lokalizaciju (NLS, od 

engl. nuclear localization signal). Na N-kraju se nalazi Neh2 domena u kojoj su nalaze dva 

motiva, DLG (niskog afiniteta) i ETGE (visokog afiniteta) kojima NRF2 ulazi u interakciju s 

KEAP1. Također, u ovoj domeni se nalazi i slijed sedam lizina koji cilj za ubikvitiniraciju, pri 

čemu se NRF2 upućuje na proteasomalnu degradaciju. C- terminalna domena Neh3 je 
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transaktivacijska domena zajedno s Neh4 i Neh5  te su sposobni aktivirati transkripciju. Neh6 

domena bogata je serinom, i odgovorna je za negativnu regulaciju neovisnu o Keap1 putem 

β-TrCP (engl. β-Transducin repeat-Containing Protein) koji potiče ubikvitinaciju NRF2. Neh7 

domena odgovorna je za inhibiciju NRF2 signalnog puta vezivanjem NRF2 s retinoičnim X 

receptorom α (RXR α) i prekidanjem veze CBP-a (engl. CREB-binding protein) s domenama 

Neh4 i Neh5 (318). 

KEAP1, negativni regulator aktivacije NRF2, sastoji se od 624 aminokiseline. U uvjetima bez 

stresa, ekspresija gena koji reagiraju na elektrofilni podražaj održava se na bazalnoj razini zbog 

ravnoteže u sintezi i razgradnji NRF2. Naime, novosintetizirani NRF2 veže se na KEAP1 koji je 

u kompleksu s Culin-3, E3 Ubiquitin-proteinskom ligazom i RBX  te se ubikvitinira i time 

upućuje na proteasomalnu razgradnju (319) (Slika 5). U uvjetima narušene redoks 

homeostaze, dolazi do promjene konformacije KEAP1 zbog stvaranja disulfidnih veza cisteina 

u KEAP1 te time dolazi do djelomičnog otpuštanja NRF2(320). Kako se u ovoj konformaciji 

NRF2 ne može ubikvitinirati, a novonastali NRF2 se ne može vezati na KEAP1, novonastali 

NRF2 ulazi u jezgru i aktivira ekspresiju antioksidirajućih i detoksicirajućih gena kao što su: 

GCLC, GCL, NQO1, HMOX1, SRXN1, GST, TXN, GSR, SOD1, MRPs, UGT (321,322).  

 

  

 

Slika 5. Aktivacija NRF2 – ulazak vodikovog peroksida kroz akvaporine, djelomično 

oslobađanje NRF2 iz kompleksa s KEAP, ulazak novosintetiziranog  NRF2 u jezgru i transkripcija 

antioksidacijskih gena 
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1.3.4.2. Regulacija ekspresije NRF2 kod raka 

Istraživanja su pokazala da u tumorima dolazi do promjene u regulaciji i ekspresiji NRF2. Na 

modelu akutne ozljede pluća izazvanom oksidansima (acute lung injury - ALI), Marzec i sur. 

(323) pokazali su da polimorfizam označen kao rs6721961 na razini ARE elementa NRF2 

promotora utječe na tijek bolesti. Heterozigotni pacijenti (A/C) imali su značajno viši rizik za 

razvoj ALI nakon velike traume u usporedbi s A/A homozigotima. Mehanizam navedene 

razlike leži u manje učinkovitom vezivanju NRF2 na polimorfne alele (323). Transkripcija NRF2 

regulirana je autoregulacijom i NF-kappa B heterodimerom P50/P65 koji se specifično veže na 

NRF2 promotor, inducira njegovu transkripcijsku aktivnost i posljedični antioksidacijski 

odgovor(324). Također, BRCA1 se veže na AHT/ARNT i time povećava aktivnost gena 

induciranih ksenobiotičkim stresom, uključujući aktivnost NRF2(325).  

Uz transkripciju, ekspresija NRF2 je i epigenetički regulirana preko mikro RNA (miRNA). miRNA 

su male, nekodirajuće, 20-22 nukleotida duge RNA koje sudjeluju u finoj postranskripcijskoj 

regulaciji brojnih gena, uključujući 60 posto ljudskih gena koji kodiraju proteine. Trenutno su 

zabilježene 2654 ljudske, zrele miRNA (326,327).  

Brojni radovi ukazuju na regulaciju  NRF2 i/ili KEAP1 putem brojnih miRNA. Yamamoto i sur. 

pokazali su na stanicama HeLa da miR-507, miR-634, miR-450a, miR-129-5p mogu smanjiti 

razinu NRF2, što povećava osjetljivost stanica HeLa na H2O2 i cisplatinu. Također, na 

animalnim modelima pokazali su inhibiciju rasta A549 tumora (koji ima povišenu ekspresiju 

NRF2 zbog mutacije KEAP1) nakon egzogeno unesenog miR-507 (328). Epigenetska regulacija 

NRF2 odvija se i putem miRNA koje reguliraju KEAP1. Primjerice miRNA 200-a kod stanica 

karcinoma dojke te miR-141 kod stanica raka jajnika inhibiraju mRNA za KEAP1, čime se 

smanjuje razina KEAP1 i povećava razina NRF2(329,330). 

Godine 2006. Faraonio i sur. pokazalo je da divlji tip TP53 (WT TP53) izravnom interakcijom s 

ARE elementom smanjuje njegovu aktivnost (331). Novi podaci ukazuju da kod raka pluća 

transkripcija NRF2 ovisi o statusu mutacije TP53. U stanicama raka pluća s WT TP53, smanjuje 

se vezivanje SP1 na NRF2 promotor zbog čega se posljedično smanjuje i transkripcija NRF2. 

Kod tumora koji sadrže mutirani TP53 ovaj učinak izostaje, SP1 se snažno veže za NRF2 

promotor i aktivira njegovu transkripciju te je on aktivan i povećava  transkripciju svojih ciljnih 

gena.  

Potrebno je naglasiti da se aktivacija NRF2 događa vrlo brzo nakon izlaganju stresoru te je pod 

utjecajem i drugih signalnih puteva koji se međusobno preklapaju i/ili aktiviraju. (366) 
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Uz ulogu u antioksidacijskom odgovoru stanice na stres, NRF2 potiče i transkripciju gena 

signalnih puteva WNT i NOTCH, koji su važni za samoobnavljanje. Time NRF2 održava matične 

stanice raka (CSC, od engl. Cancer Stem Cells) u nediferenciranom obliku.  

Utišavanje NRF2 značajno smanjuje markere CSC-a i potiče njihovu diferencijaciju, što je 

prikazano na modelima glioma, tumora dojke te na staničnim modelima raka jajnika s visokim 

ALDH i hepatocelularnog karcinoma otpornog na sorafenib. Dodatno, NRF2 se veže izravno 

na uzvodne regije gena OCT4 i NANOG čime potiče njihovu ekspresiju (332–337).  

 

Matične stanice raka dojke (eng. breast cancer stem cells - BCSC) pokazuju plastičnost koja im 

omogućuje prijelaz između dva fenotipska stanja: proliferativnog epitelnog stanja s visokom 

ekspresijom aldehid dehidrogenaze (ALDH) te mirnog, invazivnog mezenhimalnog stanja, 

karakteriziranog ekspresijom CD24-/CD44+, slično epitelno-mezenhimalnoj tranziciji (EMT). 

Ova dva fenotipska stanja praćena su promjenama ROS-a – epitelno stanje ima niske razine 

ROS-a, dok mezenhimalno ima visoke. Štoviše, BCSC u epitelnom stanju pokazuju snažan 

antioksidacijski odgovor posredovan NRF2 (338). Također, BCSC kod kojih je utišan NRF2 nisu 

razvile otpornost na citostatike te su pokazale povećanu smrt stanica i odgođeni rast (339). 

NRF2 se pokazao i kao važan čimbenik otpornosti BCSC na terapiju zračenjem (334,340). 

Iako je većina podataka koji povezuju NRF2 i CSC dobivena in vitro, inhibicija NRF2 u CSC 

mogla bi biti obećavajuća opcija za terapije raka koje uključuju senzibilizaciju zračenjem. 

 

1.3.4.3. Uloga NRF2 u rezistenciji tumora na terapiju  

Nažalost, u malignoj transformaciji stanice, aktivirani NRF2 pokazuje svoju “tamnu stranu” 

(222) - aktivacija NRF2 u tumorskim stanicama potiče obrambene zaštitne mehanizme koji 

pomažu u preživljavanju, progresiji raka i metastaziranju te povećavaju otpornosti na 

radioterapiju i kemoterapiju. Ovi učinci NRF2 vezani su uz njegovu ulogu glavnog 

antioksidacijskog transkripcijskog faktora, ali i uz njegovu regulaciju gena uključenih u različite 

stanične procese povezane s metabolizmom lijekova: izlučivanje, metabolizam energije, 

metabolizam željeza i aminokiselina, metabolizam mitohondrija, autofagiju i proliferaciju. Sve 

to dovodi do zaštite tumorskih stanica od primijenjene terapije i stavlja NRF2 u skupinu 

regulatora obilježja raka (341).  

U prilog navedenom je uloga NRF2 u razvoju rezistencije na zračenje i kemoterapiju u 

stanicama raka debelog crijeva (342,343), utjecaj NRF2 na rezistenciju na sorafenib kod 
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hepatocelularnog karcinoma (336) i rezistenciju na gemcitabin kod raka gušterače (344). 

Mutacija pojačane funkcije NRF2 (engl. „Gain of function“) kod NSCLC indikator je 

radiorezistencije (345), a status mutacije NRF2 može se koristiti i za procjenu potencijalne 

koristi kemoterapije temeljene na platini (346). 

Do aktivacije NRF2 također može doći zbog mutacija u njegovom represoru, KEAP1, što je 

vidljivo kod  adenokarcinoma pluća s KRAS mutacijama, gdje inaktivirajuće mutacije KEAP1 

dovode do prekomjerne ekspresije NRF2. Ova prekomjerna ekspresija NRF2 dovodi do 

progresije tumora uzrokujući i podržavajući metabolički pomak i reprogramiranje, što 

rezultira metastazama i otpornošću na cisplatinu (347–349). Preživljavanje i proliferacija ovih 

stanica uvelike ovise o povećanoj aktivnosti NRF2, a nazivaju se i "NRF2 ovisnice" (312). 

Signalni put NRF2 isprepliće se s drugim signalnim putovima. Stoga promjene u aktivnosti 

drugih putova moduliraju aktivnost NRF2 te povećavaju otpornost tumora. Takav primjer je 

E3 ligaza NEDD-4, koja regulira PTEN (tumor supresor fosfataza i TENsin homolog) koji dalje 

regulira put PI3K/AKT/mTOR i utječe na AKT/NRF2/HMOX-1 osovinu (350).  

Obzirom na navedeno, signalni put NRF2 i njegove interakcije s drugim signalnim putovima 

vrlo su važni za otpornost tumora na kemoterapiju, radioterapiju i terapije temeljene na 

antitijelima. Stoga je NRF2 atraktivna meta za napredne, visoko selektivne terapije raka. 

 

 

1.3.5. FOXO 

Obitelj transkripcijskih faktora Forkhead box (FOX) dobila je ime po Drosophila forkhead genu. 

FOX obitelj sadrži devetnaest podobitelji gena FOXO, FOXA i FOXS, a definirana je visoko 

konzerviranom krilato spiralnom DNA-vezujućom domenom i motivom vilice. Druga (O) 

podobitelj FOX, FOXO, sačuvana je od Caenorhabditis elegans (C. elegans) do sisavaca; samo 

jedan FOXO gen postoji kod beskralješnjaka, dok sisavci imaju 4 FOXO gena, FOXO1, FOXO3, 

FOXO4 i FOXO6. FOXO1, FOXO4 i FOXO6 pojačano su izraženi u masnom, koštanom i živčanom 

tkivu, dok se FOXO3 u većoj količini nalazi u slezeni, želucu, crijevima, bubrezima i srčanom 

tkivu. Ova četiri gena uključena su u stanične putove koji reguliraju proliferaciju (FOXO1, 

FOXO3 i FOXO4), otpornost na oksidacijski stres (FOXO1 i FOXO3), metabolizam (FOXO1 i 

FOXO3), staničnu diferencijaciju (FOXO3), upalu (FOXO1, FOXO3 i FOXO4), starenje (FOXO1, 

FOXO3 i FOXO4) i apoptozu (FOXO1, FOXO3 i FOXO4) u sisavaca(351). 
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1.3.5.1. Regulacija FoxO 

Ekspresija specifičnih FoxO članova kod sisavaca tkivno je specifična i regulirana prostorno i 

vremenski u različitim razvojnim fazama (352,353). FoxO transkripcijski faktori detektiraju 

promjene u izvanstaničnom ili unutarstaničnom okruženju. Njihova aktivnost je pod 

utjecajem različitih signala, poput faktora rasta koji aktiviraju PI3K/AKT signalni put i različitih 

signala stresa, uključujući oksidacijski stres (354). FoxO ima ulogu u raznim bolestima, 

uključujući rak. Općenito, imaju funkciju tumor supresora poticanjem aresta staničnog 

ciklusa, apoptoze, otpornosti na stres i popravka DNA, a inaktivirani su u različitim vrstama 

raka kod ljudi (355,356). Osim toga, FoxO su središnji regulatori, nalazeći se na raskrižju 

staničnog metabolizma, diferencijacije i transformacije (357,358). Novija istraživanja 

pokazuju da bi FOXO3 mogao biti i onkogen (359). Regulacija FOXO odvija se regulacijom 

transkripcijske aktivnosti, stanične lokalizacije, stabilnosti proteina te regulacijom na razini 

mRNA. FOXO se nalaze pod negativnom regulacijom puta faktora rasta- PI3K/AKT, koji je često 

hiperaktivan kod malignih tumora (360) 

U stanjima oksidacijskog stresa FOXO se aktiviraju putem c-Jun N-terminalne kinaze (JNK). 

(361). FOXO ima ulogu i u energetskom metabolizmu stanice. Pri energetskom deficitu, tj. 

porastu AMP/ATP, dolazi do aktivacije AMP-om aktivirane protein kinaze (AMPK), koja 

fosforilira FOXO3, što izaziva porast ekspresije gena uključenih u antioksidacijski odgovor i 

energetski metabolizam. Faktori rasta i različiti oblici stresa aktiviraju kinaze koje 

fosforiliracijom reguliraju aktivnost FoxO. Općenito, kinaze aktivirane čimbenicima rasta koji 

potiču razvoj tumora (kao što je AKT) inhibiraju funkciju FoxO, dok kinaze aktivirane stresom, 

kao što su JNK, AMPK i PERK, potiču funkciju FoxO. Fosforilacija FoxO kontrolira funkciju FoxO 

kroz tri glavna mehanizma: nuklearna lokalizacija, transkripcijska aktivnost i stabilnost 

proteina. Stabilnost FoxO proteina regulirana je ubikvitinacijom i posljedičnom 

proteasomalnom degradacijom (362). Određeni okolišni podražaji aktiviraju uzvodne kinaze 

koje fosforiliraju FoxO, koji tada postaje podložan za ubikvitinaciju i degradaciju (363,364).  

Uz fosforilaciju i ubikvitinaciju, regulatori FoxO mogu modificirati aktivnost FoxO drugim 

posttranslacijskim modifikacijama, uključujući acetilaciju, metilaciju, glikozilaciju i 

hidroksilaciju. Acetilacija staničnih proteina je važna posttranslacijska modifikacija koja 

pokriva 80-90% ukupnog staničnog proteoma (365). Acetilacija FoxO utječe na funkciju FoxO 

dvojako, mijenjanjem vezanja FoxO na DNA ili isključivanjem FoxO iz jezgre (366,367). 

Acetilacija FoxO može izazvati različite rezultate. Primjer je acetilacija putem CBP, koja kod 
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FoxO1 izaziva pojačanu transkripcijsku aktivnost, a kod FoxO4 izaziva inhibiciju transkripcije 

(368,369). Također, FoxO3 se acetilira u oksidacijskom stresu, te se povezuje sa SIRT1, koji 

onda deacetilira FoxO3 zbog čega dolazi do aresta staničnog ciklusa i prevencije apoptoze 

(370). 

Transkripciju FoxO mogu regulirati različiti transkripcijski faktori, uključujući E2F-1, TP53, HIF-

1α i sam FoxO. E2F-1 povećava ekspresiju FoxO1 i FoxO3 (371). TP53 se aktivira oštećenjem 

DNA i može se vezati na promotorsku regiju FoxO3 te započeti transkripciju FoxO3 (372,373).  

FoxO promotor sadrži vezna mjesta i za HIF-1α, čime dolazi do negativne povratne sprege. 

Naime, hipoksija povećava razinu HIF-1α, koji izaziva transkripciju FoxO, a potom FoxO 

inhibira HIF-1α induciranu apoptozu (374). FoxO3 može povećati ekspresiju FoxO1 i 

FoxO4(375). Nakon tretmana faktorima rasta, sva tri FoxO smanjuju ekspresiju, vjerojatno 

inhibicijom fosforilacije FoxO3. S druge strane, moguć je i suprotan učinak FoxO3, kao što je 

inhibicija transkripcije FoxO1 koja je vidljiva kod stanica raka prostate (376).  

Na postranskripcijskoj razini regulacija FoxO odvija se putem stabilizacije njegove mRNA 

pomoću RNA vezajućeg proteina HuR (377), te putem nekodirajućih RNA, uključujući miRNA 

(378) i duge nekodirajuće RNA (LncRNA) (93). Kod karcinoma dojke, duga nekodirajuća RNA 

lncFoxO1 povećava ekspresiju FoxO1 i djeluje kao supresor razvoja raka dojke (378). 

 

1.3.5.2. FoxO kod raka 

Ekspresija FoxO kod raka prvo je otkrivena kao fuzijski produkt kromosomske translokacije 

(FoxO1 kod alveolarnog rabdomiosarkoma, FoxO3 i FoxO4 kod AML)(379–381). FoxO 

općenito funkcioniraju kao tumor-supresori što se očituje u deleciji ili inaktivaciji kod raka (npr 

FoxO1 i FoxO3 kod raka prostate)(382). Snažan tumor-supresorski učinak vidljiv je i po tome 

što za tumorima sklon fenotip treba učiniti deleciju svih 6 alela za FoxO1, 3 i 4 (383,384). Na 

staničnim linijama dokazano je da FoxO obitelj mogu limitirati brojna obilježja raka – smanjiti 

proliferaciju (385–388), poticati apoptozu i senescentnost (389–392),  a limitirati angiogenezu 

(392), invazivnost i metastatski potencijal (393)(394).  

 

Uloga FOXO kao tumor supresora ipak nije jednoznačna te ima dokaza kako FOXO djeluju i 

kao onkogeni. Kod kronične i akutne mijeloične leukemije FoxO3 ima značajnu ulogu u 

održavanju leukemija-inicirajućih stanica, matičnih stanica leukemije odgovornih za ponovno 

javljanje rezistencije na lijekove (395,396). Uz to, FoxO3 može potaknuti i invaziju tumora, 
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povećanjem ekspresije metaloproteinaza matriksa, specifično MMP-9 i MMP-13 (397). Uz 

deacetilaciju, FoxO3a putem putem regulacije ekspresije Bim modulira osjetljivost tumorskih 

stanica na paklitaksel (398). 

FoxO1 može posredovati rezistenciju na adriamicin indukcijom ekspresije multidrug 

resistance 1 proteina (MDR1)(399). Prilagodba tumorskih stanica na kemoterapiju može biti 

posredovana FoxO induciranom reaktivacijom puta PI3K-AKT (400–402)Također, FoxO mogu 

inducirati i povećanu proizvodnju metabolita značajnih za razvoj tumora, poput 2-

hidroksiglutarata (403).  

FoxO regulacija transkripcijske koordinirana je s drugim transkripcijskim faktorima, poput 

YAP, s kojim regulira ekspresiju MnSOD i katalaze tijekom odgovora na oksidacijski stres (404). 

Zaključno, FoxO općenito djeluju kao tumorsupresori, no u određenim uvjetima FoxO također 

mogu pospješiti razvoj tumora. Stoga Hornsveld i sur. sugeriraju da FoxO nisu tipični tumor 

supresori nego da su u stanju pojačati otpornost svih stanica, kako zdravih, tako i 

tumorskih(405). 
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2. CILJ ISTRAŽIVANJA 
 

Cilj ovog doktorskog rada bio je ispitati povezanost razvoja rezistencije na kemoterapiju kod 

HER2+ i trostruko negativnih tumora dojke s ekspresijom akvaporina AQP3 i AQP5 te 

transkripcijskih faktora NRF2 i FOXO1, s ciljem identificiranja potencijalnih molekularnih 

pokazatelja koji bi mogli doprinijeti razvoju prediktivnog modela odgovora na kemoterapiju. 

 

U svrhu ostvarenja glavnog cilja postavljeni su sljedeći specifični ciljevi: 

1. odrediti promjene u ekspresiji akvaporina AQP3 i AQP5 uzrokovane kemoterapijom 

induciranim oksidacijskim stresom u stanicama tumora i strome; 

2. odrediti promjene u ekspresiji transkripcijskih faktora NRF2 i FOXO1 uzrokovane 

kemoterapijom induciranim oksidacijskim stresom u stanicama tumora i strome; 

3. analizirati povezanost ekspresije AQP3 i AQP5 s ekspresijom NRF2 i FOXO1 prije i 

nakon provedene kemoterapije. 
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3. MATERIJALI I METODE  
 

3.1. Ustroj istraživanja 

 

Istraživanje je provedeno kroz retrospektivnu studiju na kohorti opće populacije pacijentica 

liječenih u Klinici za tumore, KBC Sestre milosrdnice  u razdoblju od 2016 do 2021. godine. 

Istraživanje je vođeno bolničkim protokolima za liječenje tumora dojke, a u istraživanje su 

uključene pacijentice s HER2 pozitivnim i trostruko negativnim karcinomom dojke (stadija II i 

III). Pacijentice sa sumnjom na tumor dojke prolazile su inicijalnu širokoiglenu biopsiju 

prilikom koje je patolog odredio točnu dijagnozu. Nakon postavljene dijagnoze pacijentica je 

prolazila liječenje sukladno standardnim protokolima te su liječene neoadjuvantnom 

kemoterapijom sa ili bez bioterapije (anti-HER2 terapija) u Klinici za tumore, KBC Sestre 

milosrdnice. Nakon terapije proveden je onkološki operacijski zahvat ostatnog tumora 

(operacijske biopsije). Za istraživanje su uzeti uzorci inicijalne iglene biopsije te uzorci ležišta 

tumora. Za odabir pacijentica uzeti su u obzir sljedeći kriteriji: cjelovito provođenje sustavne 

terapije i operacijsko liječenje u Klinici za tumore, te dostupnost adekvatnih 

poslijeoperacijskih uzoraka za imunohistokemijsko bojanje četiri istraživana proteina.   

 

3.2. Dozvola Etičkog povjerenstva 
 

Istraživanje je odobreno od strane Etičkog povjerenstva KBC Sestre milosrdnice pod brojem 

251-29-11-21-01-10. Prilikom dizajna istraživanja vodilo se računa o etičkim standardima 

Deklaracije iz Helsinkija iz 1975. godine te njenim modifikacijama iz 1983. godine te je 

istraživanje u potpunosti usklađeno s navedenim. Podaci o karakteristikama pacijentica, 

primljenoj terapiji te kliničkim i radiološkim karakteristikama tumora preuzeti su iz povijesti 

bolesti i radioloških nalaza bolničkih informacijskih sustava te su kodirani. U svrhu zaštite 

osobnih podataka pacijentica, pristup istima imao je samo glavni istraživač.  
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3.3. Ispitanici  

 

U istraživanje je uključeno ukupno 131 pacijentica s karcinomom dojke od 2016. do 2021. 

godine, čiji su uzorci arhivirani u Odjelu za onkološku patologiju Klinike za tumore. Istraživanje 

je provedeno u Klinici za tumore, KBC „Sestre milosrdnice“ te na Institutu Ruđer Bošković. 

Retrospektivno istraživanje obuhvaća kohortu opće populacije pacijentica s HER2 pozitivnim 

(N075) i trostruko negativnim karcinomom dojke (stadija II i III) (N=56) koje su liječene 

neoadjuvantnom kemoterapijom s ili bez bioterapije (anti-HER2 terapija) u Klinici za tumore, 

KBC Sestre milosrdnice. Podaci o pacijenticama vođeni su pod šiframa, a identiteti su poznati 

isključivo voditelju projekta. Uz podjelu po imunofenotipu, pacijentice su podjeljene i po 

ishodu neoadjuvantnog liječenja. Ishod neoadjuvantnog liječenja određuje se matematičkim 

modelom prema patohistološkim karakteristikama ostatnog tumora u dojci i limfnim 

čvorovima, a izražava se kao ostatno tumorsko opterećenje (eng. Residual Cancer Burden – 

RCB). RCB određuje patohistološki odgovor - potpuni patohistološki odgovor (engl. 

pathohistological complete response, pCR)  ili RCB=0 označava odsutnost ostatnog invazivnog 

karcinoma u dojci i limfnim čvorovima, pri čemu mogu biti prisutne ostatne neinvazivne (in 

situ) tumorske stanice, dok RCB>0 označava veće ostatno tumorsko opterećenje (407). 

 

 

3.4. Metode  

3.4.1. Uzimanje i obrada uzoraka  

Inicijalni uzorci dobiveni su širokoiglenim biopsijama prilikom inicijalne dijagnostike tumora. 

Nakon završene onkološke terapije i izvedenog onkološkog operacijskog zahvata ostatnog 

tumora (operacijske biopsije) dobiveni su operacijske biopsije. Obje biopsije podvrgnute su 

standardnom imunohistokemijskom bojanju tumora kako bi se odredio fenotip. Prema 

imunofenotipu inicijalne biopsije odabrani su HER2 pozitivni i trostruko negativni tumori. 

Tkivo uzeto za obje biopsije obrađeno je standardnim histološkim postupkom. Uzorci tkiva 

fiksirani su u 10% puferiranom formalinu 48 sati. Nakon fiksacije tkiva su dehidrirana kroz niz 

otopina alkohola s uzlaznim koncentracijama alkohola (70%, 96% i apsolutni etanol). Nakon 

apsolutnog etanola tkiva su dehidrirana u ksilenu te prožeta parafinom da bi konačno bila 

uklopljena u parafin. 



Ocje
na

 ra
da

 

u t
ije

ku

46 
 

Parafinske kocke dobivene na ovako opisan način mikrotomom su narezane na rezove 

debljine 5 μm koji su korišteni za daljnju analizu i imunohistokemijsko bojenje.  

 

3.4.2. Imunohistokemijsko bojenje  

Parafinski rezovi pripremljeni na prethodno opisan način prošli su rehidraciju tkiva. Prvo je rez 

tkiva deparafiniran u ksilenu tri puta po pet minuta te je zatim rehidriran do destilirane vode 

kroz silazni niz koncentracija etanola (apsolutni, 96%, 70%). Nakon što su uzorci u potpunosti 

rehidrirani, uzorci su inkubirani u metanolu 2 minute te potom isprani tri puta po 5 minuta 

PBS-om te se pristupilo bojanjima specifičnih antigena. 

Za detekciju NRF2 potrebno je „odmaskirati“ antigene (engl. antigen retireval) kako bi moglo 

doći do prepoznavanja od strane antitijela.  Za tu svrhu tkivo je potrebno termički obraditi.  

Za termičku obradu korišten je citratni pufer pH 6,0, pri čemu su uzorci inkubirani na 

temperaturi od 85 ⁰C 30 minuta za detekciju NRF2. Nakon termičke obrade, uzorci su isprani 

tri puta po 5 minuta u PBS-u te su zatim inkubirani s primarnim mišjim monoklonskim 

antitijelom anti-NRF2 (1:100, ab31163, Abcam, Velika Britanija) preko noći na 4⁰C u vlažnoj 

komori. Po isteku inkubacije, uzorci su isprani tri puta po 5 minuta u TBS-u, te su blokirane 

endogene peroksidaze inkubacijom u 3% H2O2 20 minuta u mraku. Uzorci su isprani tri puta 

po 5 minuta u TBS-u, te su inkubirani sekundarnim antitijelom En Vision, (DAKO, Danska). 

Ponovno, uzorci su isprani od ostataka antitijela tri puta po 5 minuta u TBS-a, te se pristupilo 

vizualizaciji kompleksa antigen-antitijelo dodatkom kromogena DAB (DAKO). DAB je substrat 

peroksidaze, koja je vezana za sekundarno antitijelo i reakcijom daje netopivi spoj koji je 

smeđe obojan. Nakon 2 do 5 minuta, višak DAB-a se uklonio ispiranjem u destiliranoj vodi te 

su uzorci inkubirani 10 sekundi s hemalaunom kako bi se vizualizirale jezgre (one su obojane 

plavo).  Nakon ispiranja u vodovodnoj vodi pristupilo se dehidraciji tkiva kroz uzlazni niz 

koncentracija etanola (70%, 96%, apsolutni) te konačna dehidracija u ksilenu nakon čega su 

uzorci uklopljeni u medij za uklapanje uzoraka čime je dobiven trajni preparat. 

Za detekciju AQP3 rehidrirani uzorci su inkubirani u metanolu 2 minute i isprani tri puta po 5 

minuta u PBS-u. Nakon ispiranja uzorci su inkubirani s primarnim mišjim monoklonskim 

antitijelom anti-AQP3 (F-1) (1:50, sc-518001, Santa Cruz Technology, SAD) preko noći na 4⁰C 

u vlažnoj komori. Po isteku inkubacije, uzorci su isprani tri puta po 5 minuta u TBS-u, te su 

blokirane endogene peroksidaze inkubacijom u 3% H2O2 20 minuta u mraku. Uzorci su isprani 
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tri puta po 5 minuta u TBS-u, te su inkubirani sekundarnim antitijelom En Vision, (DAKO, 

Danska). Ponovno, uzorci su isprani od ostataka antitijela tri puta po 5 minuta u TBS-a, te se 

pristupilo vizualizaciji kompleksa antigen-antitijelo dodatkom kromogena DAB (DAKO). DAB 

je substrat peroksidaze, koja je vezana za sekundarno antitijelo i reakcijom daje netopivi spoj 

koji je smeđe obojan. Nakon 2 do 5 minuta, višak DAB-a se uklonio ispiranjem u destiliranoj 

vodi te su uzorci inkubirani 10 sekundi s hemalaunom kako bi se vizualizirale jezgre (one je 

bojaju plavo).  Nakon ispiranja u vodovodnoj vodi pristupilo se dehidraciji tkiva kroz uzlazni 

niz koncentracija etanola (70%, 96%, apsolutni) te konačna dehidracija u ksilenu nakon čega 

su uzorci uklopljeni u medij za uklapanje uzoraka čime je dobiven trajni preparat. 

Za detekciju AQP5 rehidrirani uzorci su inkubirani u metanolu 2 minute i isprani tri puta po 5 

minuta u PBS-u. Nakon ispiranja uzorci su inkubirani s primarnim mišjim monoklonskim 

antitijelom anti-AQP5 (D-7) (1:50, sc-514022, Santa Cruz Technology) preko noći na 4⁰C u 

vlažnoj komori. Po isteku inkubacije, uzorci su isprani tri puta po 5 minuta u TBS-u, te su 

blokirane endogene peroksidaze inkubacijom u 3% H2O2 20 minuta u mraku. Uzorci su isprani 

tri puta po 5 minuta u TBS-u, te su inkubirani sekundarnim antitijelom En Vision, (DAKO, 

Danska). Ponovno, uzorci su isprani od ostataka antitijela tri puta po 5 minuta u TBS-a, te se 

pristupilo vizualizaciji kompleksa antigen-antitijelo dodatkom kromogena DAB (DAKO). DAB 

je substrat peroksidaze, koja je vezana za sekundarno antitijelo i reakcijom daje netopivi spoj 

koji je smeđe obojan. Nakon 2 do 5 minuta, višak DAB-a se uklonio ispiranjem u destiliranoj 

vodi te su uzorci inkubirani 10 sekundi s hemalaunom kako bi se vizualizirale jezgre (one je 

bojaju plavo).  Nakon ispiranja u vodovodnoj vodi pristupilo se dehidraciji tkiva kroz uzlazni 

niz koncentracija etanola (70%, 96%, apsolutni) te konačna dehidracija u ksilenu nakon čega 

su uzorci uklopljeni u medij za uklapanje uzoraka čime je dobiven trajni preparat. 

Za detekciju FOXO1 potrebno je „odmaskirati“ antigene (engl. antigen retireval) kako bi moglo 

doći do prepoznavanja od strane antitijela.  Za tu svrhu tkivo je potrebno termički obraditi.  

Za termičku obradu korišten je citratni pufer pH 6,0, pri čemu su uzorci inkubirani na 

temperaturi od 85 ⁰C 30 minuta za detekciju NRF2. Nakon termičke obrade, uzorci su isprani 

tri puta po 5 minuta u TBST-u te su zatim inkubirani s primarnim zečjim antitijelom anti-FOXO1 

(C29H4) (1:100, 2880S, Cell Signaling Technology, SAD) preko noći na 4⁰C u vlažnoj komori. 

Po isteku inkubacije, uzorci su isprani tri puta po 5 minuta u TBS-u, te su blokirane endogene 

peroksidaze inkubacijom u 3% H2O2 20 minuta u mraku. Uzorci su isprani tri puta po 5 minuta 

u TBS-u, te su inkubirani sekundarnim antitijelom En Vision, (DAKO, Danska). Ponovno, uzorci 
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su isprani od ostataka antitijela tri puta po 5 minuta u TBS-a, te se pristupilo vizualizaciji 

kompleksa antigen-antitijelo dodatkom kromogena DAB (DAKO). DAB je substrat peroksidaze, 

koja je vezana za sekundarno antitijelo i reakcijom daje netopivi spoj koji je smeđe obojan. 

Nakon 2 do 5 minuta, višak DAB-a se uklonio ispiranjem u destiliranoj vodi te su uzorci 

inkubirani 10 sekundi s hemalaunom kako bi se vizualizirale jezgre (one je bojaju plavo).  

Nakon ispiranja u vodovodnoj vodi pristupilo se dehidraciji tkiva kroz uzlazni niz koncentracija 

etanola (70%, 96%, apsolutni) te konačna dehidracija u ksilenu nakon čega su uzorci uklopljeni 

u medij za uklapanje uzoraka čime je dobiven trajni preparat. 

 

 

3.4.3. Evaluacija imunohistokemijskih podataka  

Za sva antitijela pratila se lokalizacija pozitiviteta unutar stanice, za NRF2 i FOXO1 jezgra i 

citoplazma, za akvaporine membrana i citoplazma (pozitivitet u jezgri nije uočen). 

Obzirom da ne postoji standardizirani sustav bodovanja niti granična vrijednost 

pozitivnog/negativnog rezultata za sve istraživane receptore, dobiveno obojenje očitavali smo 

kao postotak obojenih tumorskih stanica na 1000 tumorskih stanica te 1000 stromalnih 

stanica.  

  

3.5. Statistička analiza  

Podaci su statistički obrađeni te su prikazani rezultati standardnih deskriptivnih statističkih 

metoda: srednja vrijednost i standardna devijacija. Rezultati su prikazani srednjom 

vrijednošću, standardnom greškom i postotcima tablično i grafički. Shapiro-Wilkovim testom 

ispitana je normalnost raspodjele podataka. Rezultati su obrađeni sljedećim statističkim 

testovima: Studentov t-test, Fisherov egzaktni test, χ2 test, i jednosmjerna analiza varijance 

(one-way ANOVA). Za statističke testove koji su obuhvaćali uzorke prije i nakon terapije 

korišteni su upareni testovi. Za sve testove uzeta je razina značajnosti p< 0.05. 

Sakupljeni podaci za sve skupine analizirani su statističkim programima Microsoft Excel 2010, 

MedCalc 15.8.0 (Belgija) te GraphPad 8.0 (SAD) te jamovi 2.5 (The jamovi project (2024), 

https://www.jamovi.org). 
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Za statističku obradu dobivenih podataka primijenjene su standardne metode deskriptivne 

statistike za prikaz numeričkih (vrijednosnih) varijabli: aritmetička sredina, standardna 

pogreška aritmetičke sredine te prosjek za prikaz zbirnih vrijednosti atributivnih varijabli.  

Konačno, za analizu povezanosti promatranih varijabli vezanih uz dijagnozu, ishod bolesti, 

primljene terapije s varijablama imunohistokemijskih bojanja, korištena je Spearmanova 

korelacija, koja se koristi kada među varijablama ne postoji linearna povezanost niti normalna 

distribucija. Za određivanje jačine korelacije korištena je klasifikacija prema Schoberu i 

suradnicima(406) pri čemu je raspon koeficijenta 0,3-0,69 umjerena korelacija, 0,7-0,89 jaka, 

a 0,9-1 vrlo jaka korelacija.  
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4. REZULTATI 
  

U istraživanje je uključeno 131 pacijentica, od kojih je 56 pacijentica s dijagnozom trostruko 

negativnih tumora dojke i 75 HER2 pozitivnih pacijentica. Od 56 pacijentica s dijagnozom 

trostruko negativnog tumora, 13 pacijentica je imalo potpuni odgovor na terapiju, dok 43 nije. 

Kod HER2 pozitivnih tumora, 35 pacijentica je imalo potpuni odgovor na terapiju, dok 40 nije. 

Grupe se nisu razlikovale po starosti pacijentica. Prosječna starost pacijentica s trostruko 

negativnim tumorom dojke je 56,6 godine (minimum 30, maksimum 81), a pacijentica s HER2 

pozitivnim tumorom prosječna starost je 58,7 (minimum 37, maksimum 83). Grupe se nisu 

razlikovale po promjeru tumora, gdje je prosječan tumor imao promjer 37,0 mm kod trostruko 

negativnih tumora dojke (minimum 10 mm, maksimum 100 mm) i 36,7 mm kod HER2 

pozitivnih tumora (minimum 14 mm, maksimum 100 mm). Grupe su se značajno razlikovale 

u RCB, koji je kod trostruko negativnih tumora dojke iznosio 2,11 (medijan 2,12, a kod HER2 

pozitivnih tumora 1,11 (medijan 0,482). 

  

4.1. Izražajnost FOXO1 u tumorima dojke 
Kako bi se ispitala izražajnost transkripcijskog faktora FOXO1 u HER2 pozitivnim i trostruko 

negativnim tumorima dojke, provedeno je imunohistokemijsko bojanje specifičnim anti-

FOXO1 antitijelom. Bojanje specifičnim antitijelom pokazalo je kako u navedenim tumorima 

dojke FOXO1 nije izražen, niti u tumorskom tkivu niti u stromi. 
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4.2. Izražajnost AQP3 i AQP5 u tumoru dojke  
 

4.2.1. Izražajnost akvaporina u odnosu na odgovor na terapiju 

Kako bi se istražila povezanost izraženosti AQP3 i AQP5 i odgovora na terapiju, usporedio se 

postotak pozitivnih tumorskih stanica na AQP3 i AQP5 u inicijalnoj biopsiji i operativno 

odstranjenom ležištu tumora nakon provedene terapije. U inicijalnoj biopsiji je manje od 20% 

stanica pozitivno na AQP3 i nema razlike u odnosu na odgovor na terapiju. Nakon provedene 

terapije uočava se statistički značajan porast AQP3 u ostatnom tkivu tumora u odnosu na 

inicijalnu biopsiju (p<0,0001) kod nepotpunog odgovora na terapiju (non-pCR), dok se kod 

potpunog odgovora ne nalazi pozitivnih stanica. Imunohistokemijsko bojenje AQP5 pokazalo 

je da je došlo do izrazitog statistički značajnog povećanja kod nepotpunog odgovora na 

terapiju (9% u inicijalnoj biopsiji nasuprot 56% u ostatnom tumoru, p<0,0001) (Slika 6).  

 

 

 

Slika 6. Izražajnost AQP3 i AQP5 u tumorskom tkivu tumora dojke u odnosu na odgovor 

tumora na terapiju. Usporedba izražajnosti AQP3 i AQP5 u inicijalnoj biopsiji i operativno 

odstranjenom ostatnom tkivu nakon provedene terapije. pCR – potpuni odgovor na terapiju; 

non-pCR nepotpuni odgovor na terapiju. Rezultati su iskazani kao srednja vrijednost ± 

standardna greška. Statistički značajno *** p<0,001; **** p<0,0001 

 



Ocje
na

 ra
da

 

u t
ije

ku

52 
 

 

Kako bi se istražila povezanost izraženosti AQP3 i AQP5 i odgovora na terapiju u stromi 

tumora, usporedio se postotak pozitivnih stanica strome na AQP3 i AQP5 u inicijalnoj biopsiji 

i operativno odstranjenom ležištu tumora nakon provedene terapije. U stromi inicijalnih i 

poslije operativnih uzoraka AQP3 bio je slabije izražen u odnosu na AQP5. U uzorcima u kojima 

je postojalo ostatno tumorsko tkivo nakon sustavne terapije (non-pCR) zabilježen je značajan 

porast ekspresije AQP5 (p<0,0001) i AQP3 (p=0,0228) u stromi. Također, kod potpunog 

odgovora na terapiju stanice strome ne pokazuju pozitivnost na AQP3 te se statistički 

značajno razlikuju od AQP3 pozitivnosti u stanicama strome kod nepotpunog odgovora na 

terapiju (p=0,006) (Slika 7). 

 

 

Slika 7. Izražajnost AQP3 i AQP5 u stromi tumora/ležišta tumora dojke u odnosu na odgovor 

tumora na terapiju. Usporedba izražajnosti AQP3 i AQP5 u inicijalnoj biopsiji i operativno 

odstranjenom tkivu nakon provedene terapije: pCR – potpuni odgovor na terapiju; non-pCR 

nepotpuni odgovor na terapiju. Rezultati su iskazani kao srednja vrijednost ± standardna 

greška. Statistički značajno: *p<0,05; ** p<0,01; **** p<0,0001 
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4.2.2. Izražajnost akvaporina u odnosu na imunofenotip 

Sljedeće se istražila povezanost izraženosti AQP3 i AQP5 s imunofenotipom tumora, na način 

da se usporedio postotak pozitivnih tumorskih stanica na AQP3 i AQP5 u inicijalnoj biopsiji i 

operativno odstranjenom ležištu tumora u HER2 pozitivnim i trostruko negativnim tumorima 

dojke (reprezentativne slike imunohistokemijskog bojenja prikazane na Slikama 8. i 9.). Kod 

oba istraživana imunofenotipa tumora nakon provedene neoadjuvantne sustavne terapije, 

pokazan je statistički značajan porast ekspresije AQP3 (HER2 pozitivni tumor p=0,0058,  

trostruko negativni tumor dojke p<0,0001). Također, i za AQP5 je pokazan statistički značajan 

porast ekspresije i kod HER2 pozitivnih tumora (p=0,0099) i kod trostruko negativni tumor 

dojke (p<0,0001) nakon provedene neoadjuvantne sustavne terapije. Nakon provedene 

neoadjuvantne sustavne terapije pokazan je statistički značajno veći udio stanica s povišenom 

ekspresijom AQP5 kod trostruko negativnih tumora dojke (69%) u odnosu na HER2 pozitivne 

tumore (28%, p=0,002). Istovremeno, nema značajne razlike u ekspresiji AQP3 kod  HER2 

pozitivnih i  trostruko negativnih tumora (slika 10). 

 

Slika 8. Izražajnost AQ3 u tumoru i stromi trostruko-negativnog tumora dojke, povećanje 

100x, plava strelica - tumor; crna strelica – stroma 
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Slika 9. Ekspresija AQP5 u tumoru i stromi trostruko-negativnog tumora dojke, povećanje 

100x, plava strelica – tumor; crna strelica - stroma 

 

 

Slika 10. Izražajnost AQP3 i AQP5 u tumorskom tkivu HER2 pozitivnih (HER2+) i trostruko 

negativnih tumora dojke (TNBC). Usporedba izražajnosti AQP3 i AQP5 u inicijalnoj biopsiji i 
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operativno odstranjenom ležištu tumora nakon provedene terapije. Rezultati su iskazani kao 

srednja vrijednost ± standardna greška. Statistički značajno: ** p<0,01; **** p<0,0001 

 

Nakon što se ispitala povezanost izraženosti AQP3 i AQP5 s imunofenotipom tumora u 

stanicama tumora, ispitala se povezanost izraženosti AQP3 i AQP5 u stanicama strome u 

inicijalnoj biopsiji i operativno odstranjenom ležištu tumora u HER2 pozitivnim i trostruko 

negativnim tumorima dojke. Zanimljivo, u stromi, kod oba imunofenotipa raka dojke 

pokazana je viša ekspresija AQ5 u odnosu na AQP3, koji je izrazito nizak. Slijedom izrazito 

niske ekspresije AQP3 u stromi oba imunofenotipa, nije bilo statističke razlike u ekspresiji 

AQP3 u odnosu na imunofenotip ili terapiju. Međutim, kod AQP5 zabilježen je statistički 

značajan porast ekspresije u stromi nakon sustavne terapije i kod HER2 pozitivnih tumora 

(p<0,0001) i kod trostruko negativnih tumora dojke (p<0,0001). Također, rezultati prate 

pojavu AQP5 u tumorskim stanicama pa je tako udio stanica s povišenom ekspresijom AQP5 

nakon sustavne terapije bio značajno veći u stromi trostruko negativnog tumora u odnosu na 

HER2 pozitivni tumor (p=0,019) (Slika 11). 

 

 

 

Slika 11. Izražajnost AQP3 i AQP5 u stromi HER2 pozitivnih (HER2+) i trostruko negativnih 

tumora dojke /TNBC). Usporedba izražajnosti AQP3 i AQP5 u inicijalnoj biopsiji i operativno 
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odstranjenom ležištu tumora nakon provedene terapije. Rezultati su iskazani kao srednja 

vrijednost ± standardna greška. Statistički značajno: *p<0,05; ** p<0,01; **** p<0,0001 

 

4.2.3. Izražajnost akvaporina u odnosu na odgovor na terapiju kod HER2 pozitivnih 
tumora dojke i kod trostruko negativnih tumora dojke 

Obzirom da je uočeno povećanje u izraženosti AQP3 i AQP5 u tumoru nakon provedene 

neoadjuvantne sustavne terapije posebice kod nepotpunog odgovora na terapiju te kod oba 

promatrana imunofenotipa tumora, pacijenti su podijeljeni po imunofenotipu i odgovoru na 

terapiju.  

Analizom izraženosti AQP3 u HER2 pozitivnim tumorima pokazan je statistički značajan porast 

ekspresije AQP3 u ležištu tumora kod potpunog patohistološkog odgovora u odnosu na 

nepotpuni (p=0,0349). Također, porast izraženosti AQP3 uočen je kod HER2 pozitivnih tumora 

kod kojih je postignut potpuni patohistološki odgovor (ostatne stanice u ležištu tumora, 

zadovoljen kriterij pCR) u odnosu na inicijalne uzorke (p<0,001). Kod trostruko negativnih 

tumora pokazan je statistički značajan porast ekspresije AQP3 u stanicama tumora kod kojih 

nije postignut potpuni patohistološki odgovor (p<0,001). 

Analiza je pokazala značajan porast izraženosti AQP5 nakon sustavne terapije i kod ostatnih 

HER2 pozitivnih (8 % vs 42 % , p=0,0016 ) i trostruko negativnih (s 10 % na 69 %, p<0,001) 

tumora. Porast izraženosti AQP5 nakon sustavne terapije bio je najveći kod ostatnog trostruko 

negativnog tumora (p<0,001) u odnosu na inicijalnu biopsiju, a zanimljivo je da je izraženost 

AQP5 statistički značajna u odnosu na HER2 pozitivne tumore (42% vs 69 %, p=0,004). 

U slučajevima potpunog patohistološkog odgovora, u ležištu tumora nakon sustavnog 

liječenja trostruko negativnih tumora nije pronađena ekspresija ni AQP3 niti AQP5. 

Ostatni HER2 pozitivni tumori (non-PCR) imali su značajno višu ekspresiju AQP5 u odnosu na 

ostatne tumorske stanice HER2 pozitivnih tumora koji su zadovoljili kriterije potpunog 

patohistološkog odgovora (pCR) (42 % vs 7 %, p=0,002) (Slika 12).  
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Slika 12. Izražajnost AQP3 i AQP5 u tumorskom tkivu HER2 pozitivnih (HER2+) i trostruko 

negativnih tumora dojke (TNBC) u odnosu na odgovor tumora na terapiju. Usporedba 

izražajnosti AQP3 i AQP5 u inicijalnoj biopsiji i operativno odstranjenom ležištu tumora nakon 

provedene terapije. Rezultati su iskazani kao srednja vrijednost ± standardna greška. 

Statistički značajno: ** p<0,01; ***p<0,001 

 

Ispitana je i ekspresija AQP3 i AQP5 u stromi ovisno o oba promatrana parametra, o 

patohistološkom odgovoru i imunofenotipu. Ekspresija AQP3 u stanicama strome kod oba 

imunofenotipa bila je niska, i prije i poslije sustavnog liječenja.  

AQP5 je pokazao značajnu dinamiku kod oba fenotipa. Zabilježen je statistički značajan porast 

ekspresije AQP5 nakon sustavne terapije za oba imunofenotipa (p<0,0001), s tim da je porast 

bio izraženiji kod TNBC u odnosu na HER2 pozitivne tumore (62 % vs 46 %, p=0,020). Kod 

potpunog odgovora, ekspresija AQP5 u stromi ostala je niska i kod trostruko negativnih i HER2 

pozitivnih tumora (Slika 13). 
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Slika 13. Izražajnost AQP3 i AQP5 u stromi HER2 pozitivnih (HER2+) i trostruko negativnih 

tumora dojke (TNBC) u odnosu na odgovor tumora na terapiju. Usporedba izražajnosti AQP3 

i AQP5 u inicijalnoj biopsiji i operativno odstranjenom ostatnom tkivu nakon provedene 

terapije. Rezultati su iskazani kao srednja vrijednost ± standardna greška. Statistički značajno: 

* p<0,05; **** p<0,0001 

 

4.3. Izražajnost NRF2 u tumoru dojke  

4.3.1. Izražajnost NRF2 u odnosu na odgovor na terapiju 

Kako bi se pratio utjecaj terapije na antioksidacijski odgovor stanica tumora i strome na 

primijenjenu terapiju, ispitana je izražajnost i lokalizacija transkripcijskog faktora NRF2 u 

stanicama tumora dojke u odnosu na odgovor tumora na terapiju. Lokalizacija NRF2 

transkripcijskog faktora u jezgri upućuje na njegovu potencijalnu aktivaciju uslijed prisutnosti 

oksidacijskog stresa.  Zabilježen je značajan porast ekspresije NRF2 u jezgrama tumorskih 

stanica kod ostatnih tumora (no- pCR) (p=0,0237), što ukazuje na porast transkripcijske 

aktivnosti NRF2 uslijed kemoterapije. Kod tumora kod kojih je postignut pCR, ostatne 

tumorske stanice pokazale su značajno nižu ekspresiju NRF2 u jezgri u odnosu na stanice 

ostatnih tumora (non pCR) (5,4% vs 26,5%, p=0,0189).Obzirom da je kod ostatnih tumora 

izražajnost NRF2 u jezgri bila značajno veća, može se zaključiti da NRF2 značajno sudjeluje u 

obrani tumorskih stanica i razvoju rezistencije na sustavnu terapiju. U citoplazmi tumorskih 
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stanica izražajnost NRF2 ostala je podjednaka prije i poslije sustavne terapije. Najveći pad 

citoplazmatske razine NRF2 zabilježen je u ostatnim stanicama kod tumora koji su nakon 

kemoterapije ostvarili pCR, s 54,5% na 8,7 %, p<0,0001). Tumori koji nisu zabilježili pCR, imali 

su nakon sustavne terapije također značajno višu razinu citoplazmatskog NRF2 u odnosu na 

ostatne tumorske stanice iz pCR grupe (52,0% % vs 8,7 %, p<0,0001) (Slika 14). 
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Slika 14. Izražajnost i lokalizacija transkripcijskog faktora NRF2 u stanicama tumora dojke u 

odnosu na odgovor tumora na terapiju, pCR – potpuni odgovor na terapiju; non-pCR 

nepotpuni odgovor na terapiju. Usporedba izražajnosti NRF2 u inicijalnoj biopsiji i operativno 

odstranjenom ostatnom tkivu nakon provedene terapije. . Rezultati su iskazani kao srednja 

vrijednost ± standardna greška. Statistički značajno: * p<0,05; **** p<0,0001 

 

Također, ispitana je izražajnost i lokalizacija transkripcijskog faktora NRF2 u stanicama strome 

tumora dojke u odnosu na odgovor tumora na terapiju. U stanicama strome, izražajnost NRF2 

u jezgrama prije sustavne terapije bila je općenito niska. Nakon kemoterapije, zabilježen je 

statistički značajan porast izražajnosti NRF2 u jezgrama kod ostatnih tumora (non PCR) (4,1% 

vs 30,5 %, p<0,0001), što upućuje na potrebu za aktivacijom antioksidacijske zaštite putem 

NRF2 i u stanicama strome nakon kemoterapije. Izražajnost NRF2 je značajno veća kod stanica 

strome u non-pCR grupi odnosu na stanice strome pCR skupine (30,5 % vs 11,6 %, p=0,0033). 
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U citoplazmi stanica strome ostatnih tumora izražajnost NRF2 značajno je porasla nakon 

kemoterapije (s 12,0 % na cca 28,3 %, p=0,0038) (Slika 15). 
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Slika 15. Izražajnost i lokalizacija transkripcijskog faktora NRF2 u stanicama strome tumora 

dojke u odnosu na odgovor tumora na terapiju, pCR – potpuni odgovor na terapiju; non-pCR 

nepotpuni odgovor na terapiju. Usporedba izražajnosti i lokalizacije NRF2 u inicijalnoj biopsiji 

i operativno odstranjenom ostatnom tkivu nakon provedene terapije. Rezultati su iskazani 

kao srednja vrijednost ± standardna greška. Statistički značajno: ** p<0,01; **** p<0,0001 

 

 

4.3.2. Izražajnost NRF2 u odnosu na imunofenotip tumora 

Sljedeće, ispitana je izražajnost i lokalizacija transkripcijskog faktora NRF2 ovisno o 

imunofenotipu tumora dojke, (HER2 pozitivni i trostruko negativni tumori dojke) (Slika 10). 

Kod HER2 pozitivnih tumora izražajnost NRF2 u jezgrama tumorskih stanica nije se značajno 

promijenila nakon kemoterapije dok je u citoplazmama zabilježen statistički značajan pad 

izražajnosti NRF2 (p<0,001).  

Za razliku od HER2 pozitivnih tumora, kod trostruko negativnih tumora dojke zabilježen je 

porast izražajnosti NRF2 u jezgrama tumorskih stanica nakon kemoterapije (p=0,068). Porast 

izražajnosti u citoplazmi kod TNBC nije statistički značajan, ali je izražajnost u citoplazmi nakon 
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kemoterapije bila značajno veća kod TNBC u odnosu na HER2 pozitivne tumore (p=0,0012) 

(Slika 16). 
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Slika 16. Izražajnost i lokalizacija transkripcijskog faktora NRF2 u stanicama HER2 pozitivnih i 

trostruko negativnih tumora dojke. Usporedba izražajnosti i lokalizacije NRF2 u inicijalnoj 

biopsiji i operativno odstranjenom ostatnom tkivu nakon provedene terapije. Rezultati su 

iskazani kao srednja vrijednost ± standardna greška. Statistički značajno: ** p<0,01; *** 

p<0,001 

 

4.4. Analiza korelacija 
 

Analizom Spearmanove korelacije utvrđene su brojne značajne povezanosti između 

ekspresije AQP3, AQP5 i NRF2 te patohistoloških parametara, uključujući pCR i RCB. 

Kod HER2 pozitivnih tumora (Tablica 1.) je vrlo jaka korelacija između RCB i potpunog 

odgovora (ρ=0,901), što potvrđuje valjanost modela i analize (veći RCB znači da je ostalo 

tumora i to je nepotpuni odgovor na terapiju). Uz pCR, RCB pokazuje umjerenu pozitivnu 

korelaciju s izražajnošću AQP5 u stanicama tumora nakon terapije (ρ=0,642). Odgovor na 

terapiju kod HER2 pozitivnih tumora umjereno negativno korelira s izražajnošću AQP5 u 

tumoru i u stromi nakon terapije (ležište tumora) (ρ=-0.500 i ρ=-0.303). U biopsijama HER2 

pozitivnih tumora, AQP5 u stanicama tumora slabo korelira s AQP3 u stanicama tumora i NRF2 
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u citoplazmama stanica strome (ρ=0,264 i ρ=0,269), umjereno korelira s NRF2 u jezgrama 

stanica tumora i AQP5 u stromi (ρ=0,412 i ρ=0,811). Nadalje, u biopsijama, AQP5 u tumorima 

umjereno korelira s NRF2 u jezgrama stanica strome (ρ=0.313). U biopsijama se vidi umjerena 

korelacija NRF2 i njegovih lokalizacija (jezgra-citoplazma i tumor-stroma). NRF2 u stromi 

pokazuje umjerenu korelaciju s Ki67 (NRF2 u citoplazmi), dok su ostale, statistički značajne 

korelacije slabe. 

 

Tablica 1. Korelacija parametara kod HER2 pozitivnih tumora dojke (Spearmanova korelacija) 

    
Spearman's 
rho 

df p-value 

RCB 

pCR  -0.901 70 <.001 

AQP5 u tumoru – ležište 
tumora 

0.642 68 <.001 

pCR 

AQP5 u tumoru – ležište 
tumora 

-0.500 70 <.001 

AQP5 u stromi – ležište tumora -0.303 70 0.010 

AQP5 u tumoru – 
biopsija 

  

AQP3 u tumoru – biopsija 0.264 65 0.031 

NRF2 u jezgri tumora – biopsija 0.412 60 <.001 

NRF2 u jezgri strome – biopsija 0.313 62 0.012 

NRF2 u citoplazmi strome – 
biopsija 

0.269 62 0.032 

AQP5 u stromi – biopsija 0.811 71 <.001 

AQP5 u tumoru – 
ležište tumora 

NRF2 u jezgrama strome – 
ležište tumora 

0,353 47 0,013 

AQP3 u stromi – 
biopsija 

AQP3 u tumoru – biopsija 0.454 64 <.001 

NRF2 u jezgrama strome – 
ležište tumora 

-0.315 44 0.033 

NRF2 u jezgrama 
tumora – biopsija 

  

NRF2 u citoplazmi tumora – 
biopsija 

0.516 60 <.001 

NRF2 u jezgri strome – biopsija 0.398 60 0.001 

NRF2 u citoplazmi strome – 
biopsija 

0.382 60 0.002 

AQP5 u stromi – biopsija 0.318 60 0.012 

NRF2 u 
citoplazmama 
tumora – biopsija 

  

NRF2 u jezgri strome – biopsija 0.347 60 0.006 

NRF2 u citoplazmi strome – 
biopsija 

0.371 60 0.003 
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NRF2 u jezgrama 
strome – biopsija 

  

NRF2 u citoplazmi strome – 
biopsija 

0.589 62 <.001 

NRF2 u citoplazmi tumora – 
ležište tumora 

0.591 14 0.016 

NRF2 u 
citoplazmama 
strome – biopsija  

  

Ki67 0.386 54 0.003 

AQP5 u stromi – biopsija  
0.297 62 0.017 

NRF2 u jezgrama 
strome – ležište 
tumora 

  

NRF2 u citoplazmi strome  – 
ležište tumora 

0.604 47 <.001 

AQP5 u stromi – biopsija 
-0.294 47 0.040 

 

Kod trostruko negativnog tumora dojke također se nalazi umjerena negativna korelacija RCB 

i odgovora na terapiju (ρ=-0.632). RCB također umjereno pozitivno korelira s AQP3 u 

stanicama tumora i AQP3 u stromi tumora nakon operacije (ρ=0,413 i ρ=0,454) te s NRF2 u 

jezgrama i citoplazmama stanica strome  nakon operacije (ρ=0,510 i ρ=0,319). Za razliku od 

nakon operacije, u biopsiji RCB pokazuje umjerenu negativnu korelaciju  s NRF2 u 

citoplazmama stanica tumora (ρ=-0.387). Nadalje, odgovor na terapiju umjereno negativno 

korelira s AQP5 u tumoru,  AQP3 u stromi,  NRF2 u jezgrama i citoplazmama strome nakon 

operacije (ρ=0,636, ρ=0,352, ρ=0,397 i ρ=0,589). Zanimljiva je jaka pozitivna korelacija u 

ekspresiji AQP5 u tumoru i stromi u biopsiji (ρ=0,877). AQP5 nakon operacije također 

umjereno korelira s NRF2 u jezgrama i citoplazmama strome (ρ=0,367 i ρ=0,383). U biopsiji, 

AQP3 u stanicama tumora umjereno korelira s AQP3 u stromi i AQP3 u stanicama tumora 

nakon operacije (ρ=0,503 i ρ=0,448). AQP3 u stanicama strome u biopsiji negativno umjereno 

korelira s Ki67 (ρ=-0,351), dok AQP3 u stanicama tumora nakon operacije negativno umjereno 

korelira s NRF2 u jezgrama tumora u biopsiji (ρ=-0,368). Slično kao i kod HER2 pozitivnih 

tumora, NRF2 pokazuje umjerenu do jaku pozitivnu korelaciju u biopsijama i nakon operacije 

ovisno o lokalizaciji ( jezgra-citoplazma i tumor-stroma). 
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Tablica 2. Korelacija praćenih parametara kod trostruko negativnih tumora dojke (Spearmanova 

korelacija) 

  Spearman's 
rho 

df p-value 

RCB 
AQP5 u tumoru – ležište 
tumora 

0.413 49 0.003 

 AQP3 u stromi – ležište tumora 0.454 45 0.001 

 NRF2 u citoplazmama tumora 
– biopsija 

- 0.387 43 0.009 

 NRF2 u jezgrama strome – 
ležište tumora 

0.510 42 <.001 

 NRF2 u citoplazmama strome – 
ležište tumora 

0.319 42 0.035 

  pCR - 0.632 49 <.001 

pCR 

AQP5 u tumoru – ležište 
tumora 

-0.636 54 <.001 

AQP3 u stromi – ležište tumora 0.352 49 0.011 

NRF2 u jezgrama strome – 
ležište tumora 

0.397 45 0.006 

NRF2 u citoplazmama strome – 
ležite tumora 

0.589 45 <.001 

AQP5 u tumoru – 
biopsija 

AQP5 u stromi – biopsija 
0.877  50 <.001 

AQP5 u tumoru –
ležište tumora 

  

NRF2 u jezgrama strome – 
ležište tumora 

0.367 45 0.011 

NRF2 u citoplazmama strome – 
ležište tumora 

0.383 45 0.008 

AQP3 u tumoru – 
biopsija  

AQP3 u stromi – biopsija 0.503 49 <.001 

AQP3 u tumoru – ležište 
tumora 

0.448 35 0.005 

AQP3 u stromi – 
biopsija 

Ki67 
-0.351 51 0.010 

AQP3 u tumoru – 
ležište tumora 

NRF2 u jezgrama tumora – 
biopsija 

-0.368 34 0.027 

NRF2 u jezgrama 
tumora – biopsija 

NRF2 u citoplazmama tumora 
– biopsija 

0.764 46 <.001 

NRF2 u jezgrama strome – 
biopsija 

0.544 47 <.001 

NRF2 u citoplazmama strome – 
biopsija 

0.594 47 <.001 
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NRF2 u 
citoplazmama 
tumora - biopsija 

NRF2 u jezgrama strome – 
biopsija 

0.440 46 0.002 

  
NRF2 u citoplazmama strome – 
biopsija 

0.485 46 <.001 

NRF2 u jezgrama 
strome – biopsija 

NRF2 u citoplazmama strome – 
biopsija 

0.663 47 <.001 

NRF2 u jezgrama 
tumora – ležište 
tumora 

NRF2 citoplazmama tumora – 
ležište tumora 

0.489 32 0.003 

NRF2 citoplazmama 
tumora – ležište 
tumora 

NRF2 u citoplazmama strome – 
ležite tumora 

0.359 33 0.034 

NRF2 u jezgrama 
strome – ležište 
tumora 

NRF2 u citoplazmama strome – 
ležište tumora 

0.624 45 <.001 
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5. RASPRAVA 
 

 

Karcinom dojke jedan je od vodećih uzroka smrtnosti među ženama diljem svijeta. U Hrvatskoj 

čini četvrtinu svih novih slučajeva raka u žena (110). Iako je kemoterapija jedna od ključnih 

strategija liječenja, njezina učinkovitost često je ograničena razvojem otpornosti tumorskih 

stanica i nuspojavama koje uključuju oksidacijski stres. Većina karcinoma dojke je histološki 

duktalnog i lobularnog tipa, a preostali tumori spadaju u skupinu rijetkih tumora dojki. U 

terapijskom smislu danas su važnije biološke, odnosno imunohistokemijske karakteristike 

tumora i kondiciju pacijentica te se liječenju nastoji pristupiti personalizirano. Na 

međunarodnom stručnom sastanku u St. Gallenu 2013. godine definirani su kliničko patološki 

surogati karcinoma dojke prema izraženosti hormonskih i HER2 receptora i proliferacijskog 

indeksa Ki67, na čemu se temelji sustavna terapija raka dojke (111). Karcinom dojke se 

najčešće liječi kirurškim zahvatom, sustavnom terapijom (antihormonska terapija, 

kemoterapija, bioterapija) i zračenjem. Agresivniji tumori, u koje spadaju trostruko negativan 

rak dojke i HER2 pozitivan rak dojke, sve se češće liječe sustavnom terapijom prije kirurškog 

zahvata (neoadjuvantna sustavna terapija) (112). 

Kod trostruko negativnog raka dojke (TNBC), neoadjuvantno se preferira kombinacija 

adriamicina i ciklofosfamida (AC) u 4-6 ciklusa, potom 12 ciklusa tjednih paklitaksela. Kod 

TNBC pacijentica s BRCA1/2 mutacijom može se neoadjuvantno koristiti i olaparib, a kod 

pacijentica s TNBC-om visokog rizika može se uz navedene citostatike koristiti i kombinacija 

pembrolizumaba, karboplatine i paklitaksela (148). Obzirom da su naši uzorci dobiveni prije 

uvođenja olapariba, pembrolizumaba i karboplatine u neoadjuvantni protokol, pacijentice čije 

smo uzorke koristili za ovo istraživanje prije operacije dobile su kemoterapiju po shemi 4-6 

ciklusa AC + paklitaksel 12 tjedana. Za HER2 pozitivne tumore također se najčešće koristi 

shema 4-6 puta AC + 12 tjedana paklitaksela, a tijekom terapije paklitakselom koriste se 

biološki lijekovi trastuzumab i pertuzumab, koji blokiraju proliferacijsku signalizaciju putem 

HER2 receptora. No, obzirom da je za patohistološki kriterij HER2 pozitivnosti potrebno samo 

10 % HER2 pozitivnih tumorskih stanica, dio tumorskih stanica ostaje bez direktnog učinka 

HER2 ciljane terapije. Naime, na uzorcima metastatskog HER2 pozitivnog raka dojke dokazano 

je da unutar HER2 pozitivnih tumora postoji regionalna heterogenost ekspresije u 8,7 % 
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slučajeva, što smanjuje učinkovitost HER2 ciljane terapije. Navedeno je potvrđeno u 

analizama preživljenja - regionalna heterogenost ekspresije HER2 receptora bila je povezana 

s lošijim rezultatima liječenja (vrijeme do progresije bolesti, ukupno preživljenje)  (408). 

Dominantni citostatik u liječenju raka dojke je adriamicin (dokorubicin), koji spada u skupinu 

antraciklina. Adriamicin ima višestruke mehanizme citotoksičnog djelovanja, a jedan od njih 

je povećanjem koncentracije reaktivnih kisikovih vrsta (eng. Reactive Oxygen Species, ROS), 

uključujući vodikov peroksid (H2O2) što dovodi do oksidacijskog stresa (188,409). Oksidacijski 

stres nastaje kada je ravnoteža između ROS i antioksidacijskog sustava stanice narušena, što 

može potaknuti razvoj i progresiju karcinoma. ROS imaju dvojak učinak: u fiziološkim 

koncentracijama posreduju u staničnoj signalizaciji i mogu voditi u apoptozu, dok u višim 

razinama uzrokuju oštećenje DNA, proteina i lipida te konačno mogu rezultirati staničnom 

smrću. U kontekstu kemoterapije, ROS djeluju kao efektori koji induciraju smrt tumorskih 

stanica. H2O2 u stanicu ulazi kontrolirano kroz akvaporine (252), transmembranske pore čija 

se aktivnost u vidu „otvorenosti“ pore strogo regulira. Nažalost, kontrolirani ulazak H2O2 u 

stanicu posredovan akvaporinima vjerojatno je dio mehanizma kojim akvaporini ostvaruju 

svoju ulogu u proliferaciji, diferencijaciji i apoptozi i posljedično razvoju tumora 

(267,276,288). Uloga akvaporina kod raka dojke vidljiva je u  povišenoj ekspresiji akvaporina 

u stanicama raka dojke, uglavnom AQP1, AQP3 i AQP5 (272). Kod HER2 pozitivnih tumora, 

lošija prognoza vezana je uz povišenu ekspresiju AQP3 (273), dok je AQP5 neovisni 

prognostički pokazatelj preživljavanja pacijenata s rakom dojke (274). Kod TNBC, dokazana je 

povezanost povišene ekspresije AQP5 s višim proliferacijskim indeksom Ki67, kao i lošije 

preživljenje u slučajevima zajedničke povišene ekspresije AQP3 i AQP5. AQP3 je 

akvagliceroporin što znači da, uz vodu i H2O2, omogućava prolazak glicerola kroz staničnu 

membranu u oba smjera (281,282).   

Arif i sur pokazali su da nokaut AQP3 u MDA-MB-231 stanicama trostruko negativnog 

karcinoma dojke inhibira njihovu proliferaciju, migraciju i invaziju, što upućuje na važnu ulogu 

tog akvaporina u progresiji raka dojke (410). Uloga AQP3 u migraciji tumorskih stanica 

objašnjena je njegovom ulogom stvaranju lamelopodija, koji lakše nastaju ukoliko je prisutno 

više AQP3 na membrani te njegovom ulogom u lokaliziranom provođenju vode i glicerola u 

smjeru kretanja stanice (288,289). Istraživanje Huang i sur. potvrdila je da prekomjerna 

ekspresija AQP3 povećava migraciju i invaziju ER+ stanica raka dojke (288). Olakšani transport 
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glicerola u stanicu preko AQP3 rezultira stvaranjem ATP-a, što objašnjava ulogu AQP3 u 

energetskom metabolizmu (290). Navedene metaboličke i proliferacijske uloge AQP3 upućuju 

na važnu ulogu tog akvaporina u životu stanice i čine ga vrlo interesantnom terapijskom 

metom u liječenju tumora.  

Transport vode i glicerola utječe na migraciju i metaboličke procese (osobito metabolizam 

lipida), dok H2O2 utječe na signalne putove. H2O2 pokreće nekoliko signalnih putova u stanici, 

a kanal koji može olakšati transport H2O2 svakako je potencijalni kandidat koji osigurava 

određenu razinu kontrole nad tim putovima. U prilog ovoj pretpostavci ide istraživanje Hara-

Chikuma i sur. (291) koje je na keratinocitima pokazalo kako je prijenos signala stimulacijom 

stanice s TNF-α olakšan proizvodnjom H2O2 putem NADPH oksidaze izoforme 2 (NOX2). AQP3 

se lokalizira u membrani pokraj NOX2 i po stvaranju H2O2 prenosi ga u stanicu. Ulaskom ovog 

H2O2 rezultira regulacijom (inhibicijom) proteinske fosfataze 2A i aktivacije nuklearnog faktora 

kapa B (NF-kappaB). Štoviše, CXCL12 stimulira transport H2O2 kroz membranu putem AQP3 u 

stanicama raka dojke MDA-MB-231 i DU4475 (292). Oksidacija PTEN/PTP1B događa se zbog 

H2O2, nakon čega slijedi aktivacija AKT signalnog puta i migracija stanica. Utišavanje AQP3 

onemogućava ovaj proces i time potvrđuje ulogu AQP3 u migraciji (292).  

Potreba za proučavanjem signalnih puteva na koje utječe prekomjerna ekspresija AQP3 i 

mehanizama djelovanja ogleda se u nalazu da je Auphen, inhibitor akvaporina koji sadrži zlato, 

učinkovitije blokirao transport glicerola (oko 90% inhibicije) u odnosu na transport vode (20% 

inhibicije) (293). Imajući na umu da AQP3 također olakšava transport H2O2 kroz plazma 

membranu (294,295) i strukturne sličnosti između H2O2 i vode (296), inhibitore treba pažljivo 

ispitati u pogledu njihove sposobnosti da blokiraju sve tri molekule koje su supstrati AQP3. 

Činjenica da inhibitor može nejednako blokirati transport glicerola i vode upućuje na to da 

transport H2O2 također može biti pod slabijim utjecajem, sugerirajući aktivaciju i modifikaciju 

staničnih procesa u neželjenom smjeru, odnosno prema progresiji tumora. Postoji nekoliko 

radova o učinku akvaporina općenito na antioksidacijski obrambeni sustav, posebno 

transkripcijski faktor NRF2, neovisno o bolesti (297–299). U staničnim linijama raka dojke, 

MCF7, SUM159 i SkBr3, AQP3 je bio najizraženiji akvaporin, a u HER2 pozitivnim stanicama 

bio je pojačano reguliran zajedno s NRF2 pomoću H2O2 (297), što ukazuje na potrebu 

proučavanja učinaka prekomjerne ekspresije AQP3 u odnosu na dijelove antioksidativnog 

sustava. 
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AQP5 je dokazano uključen u fiziološke procese razvoja dojke, proizvodnju mlijeka, ali i u 

razvoj raka dojke (283,300). Jung i sur. pokazali su da utišavanje AQP5 stanicama MCF-7 

negativno utječe na staničnu proliferaciju i migraciju. Osim toga, ekspresija AQP5 u benignim 

tumorima i invazivnom duktalnom karcinomu pokazala je različite obrasce - u duktalnim 

epitelnim stanicama dokazana je ekspresija AQP5 u apikalnim domenama, dok je u tumorskim 

stanicama ekspresija bila povećana uz gubitak apikalnog polariteta, što ukazuje na ulogu 

AQP5 u progresiji raka dojke (301). Kod trostruko negativnog raka dojke, primijećena je 

značajno veća ekspresija AQP5 i AQP3 u tumorskom tkivu nego u okolnom normalnom tkivu. 

Prekomjerna ekspresija AQP5 uglavnom je primijećena u uzorcima trostruko negativnog raka 

dojke s visokim proliferacijskim indeksom Ki-67 i, zajedno s višom ekspresijom AQP3, 

povezana je s agresivnijom bolešću s lošijim ukupnim preživljenjem, ukazujući na njihovu 

zajedničku ekspresiju kao neovisni prognostički marker kod trostruko negativnog raka dojke 

(287). Prekomjerna ekspresija AQP5 bila je povezana s lošijim ishodima kod pacijenata s ranim 

rakom dojke bez obzira na tip i stadij tumora, što ukazuje na to da je AQP5 neovisni 

prognostički marker preživljenja, osobito kod kurativno operiranih pacijentica s hormonski 

pozitivnim tumorima (274).  

Za dinamiku oksidacijskog stresa, akvaporina i antioksidacijskog sustava kod karcinoma dojke 

vrlo je značajno istraživanje Rodrigues i sur., u kojoj je ispitan utjecaj oksidacijskog stresa na 

profil lipida, razine medijatora oksidacijskog stresa i NRF2, obrasce ekspresije AQP1, AQP3, 

AQP5 i osjetljivost na H2O2 u tri stanične linije raka dojke koje predstavljaju hormon-pozitivne 

(MCF-7), HER2-pozitivne (SkBr-3) i trostruko negativne karcinome dojke (SUM 159). Razine 

višestruko nezasićenih masnih kiselina najviše su bile u trostruko negativnoj staničnoj liniji 

SUM 159, u kojoj je pronađena i niža razina NRF2, što može objasniti veću osjetljivost 

trostruko negativnih stanica na H2O2. Obrazac ekspresije AQP-a također je bio specifičan za 

tip stanice. Dok je AQP3 bio najizraženija izoforma u svim testiranim staničnim linijama, 

izloženost vodikovom peroksidu povećala je ekspresiju AQP3 u stanicama MCF-7 i SkBr-3, dok 

je u SUM 159 stanica razina AQP3 smanjena. Ekspresija AQP5 i AQP1 bila je slična u SUM 159 

i SkBr-3, s povećanjem nakon oksidativnog izazova, dok je u MCF-7 stanicama bila 

snižena(297).  

Istraživanje Rodriguesa i sur. o utjecaju oksidacijskog stresa na APQ5 pokazala je da AQP5, 

osim vode, vrlo učinkovito provodi i H2O2. Utišavanje AQP5 smanjilo je migracijsku sposobnost 

stanica, međutim vanjskim podražajem vodikovim peroksidom uspostavila se početna 
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sposobnost migracije, vjerojatno putem AQP3, koji je bio prisutan na staničnoj membrani. 

Stoga su autori istaknuli značajnu ulogu AQP5 u dinamičkom finom podešavanju 

unutarstaničnih razina H2O2 (302), koje su važne za redoks signalizaciju i regulaciju sudbine 

stanice (303). Ovi rezultati upućuju da bi AQP5 mogao imati značajnu ulogu u terapiji raka. 

Otkriće triju miRNA (miR-1226–3p, miR-19a-3p i miR-19b-3p) koje reguliraju AQP5 

smanjenjem njegove translacije, što dovodi do smanjene migracije stanica raka dojke, 

podupire daljnje istraživanje AQP5 kao moguće terapijske mete kod raka dojke (304).  

Povezanost ROS-a i AQP5 također je promatrana u istraživanju Oh et al. Proučavali su utjecaj 

hiperkolesterolemije i inhibicije ksantin oksidaze (enzim koji stvara ROS) na progresiju raka 

dojke in vitro i na modelu ksenografta miša. Pokazalo se da hiperlipidemijska stanja pridonose 

proizvodnji ROS-a, progresiji raka dojke i aktivaciji MAPK-a. Liječenje febuksostatom, 

inhibitorom ksantin-oksidaze, rezultiralo je smanjenjem razina ROS-a i ekspresije AQP5, 

ublažilo proliferativnu i migracijsku sposobnost stanica raka dojke, kao i plućne metastaze 

(305). Za sada još nije sigurno je li uključenost AQP5 u karcinogenezu dojke uzrok ili  posljedica 

metaboličkog reprogramiranja i redoks signalizacije putem H2O2. 

Regulacija unosa H2O2 putem akvaporina važna je i zbog njegove sposobnosti aktivacije 

antioksidacijskog sustava. Jedan od glavnih antioksidacijskih transkripcijskih faktora je 

transkripcijski faktor NRF2 (321). Uz NRF2, u antioksidacijskoj zaštiti sudjeluje i obitelj 

Forkhead box O transkripcijskih faktora (FOXO), koji osim antioksidacijskih reguliraju i brojne 

druge stanične procese (388,404,411). 

NRF2 je glavni transkripcijski faktor za antioksidacijsku obranu stanice, budući da regulira 

ekspresiju antioksidacijskih enzima poput glutation peroksidaze i superoksid dismutaze. Uz 

anitoksidacijsku zaštitu, učinci NRF2 vezani su i uz njegovu regulaciju gena uključenih u 

različite stanične procese povezane s metabolizmom lijekova: izlučivanje, metabolizam 

energije, metabolizam željeza i aminokiselina, metabolizam mitohondrija, autofagiju i 

proliferaciju. Sve to dovodi do zaštite tumorskih stanica od primijenjene terapije i stavlja NRF2 

u skupinu regulatora obilježja raka (341).  

Dokazana je uloga NRF2 u razvoju rezistencije na zračenje i kemoterapiju u stanicama raka 

debelog crijeva (342,343),  pri rezistenciji na sorafenib kod hepatocelularnog karcinoma (336) 

i rezistenciji na gemcitabin kod raka gušterače (344). Mutacija pojačane funkcije NRF2 (engl. 

„gain of function“), odnosno konstantne aktivacije, kod NSCLC indikator je radiorezistencije 
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(345), a status mutacije NRF2 može se koristiti i za procjenu potencijalne koristi kemoterapije 

temeljene na platini (346). Kod matičnih stanica raka dojke (engl. Breast Cancer Stem Cells, 

BCSC) dokazano je da utišavanje NRF2 onemogućava stvaranje otpornosti na citostatike, te su 

takve stanice pokazale povećanu smrt stanica i odgođeni rast (339). 

 Signalni put NRF2 isprepliće se s drugim signalnim putovima. Stoga promjene u aktivnosti 

drugih putova mogu modulirati aktivnost NRF2 te povećati otpornost tumora. Takav primjer 

je E3 ligaza NEDD-4, koja regulira PTEN (tumor supresor fosfataza i TENsin homolog) koji dalje 

regulira put PI3K/AKT/mTOR i utječe na AKT/NRF2/HMOX-1 osovinu (350). Indirektan utjecaj 

NRF2  na karcinogenezu putem stromalnih stanica vidljiv je kod fibroblasta povezanih s rakom 

(engl. Cancer Associated Fibroblasts, CAF) (277). 

Obzirom na navedeno, signalni put NRF2 i njegove interakcije s drugim signalnim putovima 

vrlo su važni za otpornost tumora na kemoterapiju, radioterapiju i terapije temeljene na 

protutijelima. 

Za istraživanje je izabran i transkripcijski faktor FOXO1, obzirom da regulira ključne procese 

poput apoptoze, autofagije i odgovora na oksidacijski stres. FoxO su dokazani kao tumor-

supresori, što se očituje u deleciji ili inaktivaciji kod raka (npr FoxO1 i FoxO3 kod raka prostate) 

(396). Na staničnim linijama dokazano je da FoxO mogu utjecati na brojna obilježja raka – 

smanjuju proliferaciju, potiču apoptozu i senescentnost, limitiraju angiogenezu i stjecanje 

invazivnog fenotipa. Veza akvaporina i FOXO1 dokazana je u žlijezdama slinovnicama, gdje se 

pokazalo da je FOXO1 izravni regulator ekspresije AQP5 (257)  Kod karcinoma dojke, duga 

nekodirajuća RNA lncFoxO1 povećava ekspresiju FoxO1 i djeluje kao supresor razvoja raka 

dojke (378).  

S druge strane, postoje dokazi kako FOXO djeluju i kao onkogeni, primjerice održavanjem 

leukemija inicirajućih stanica (395,396) i poticanjem invazije tumora, povećanjem ekspresije 

metaloproteinaza matriksa (MMP-9 i MMP-13) (397). FoxO mogu posredovati i u rezistenciji 

na kemoterapiju, što je dokazano kod dva glavna kemoterapijska agensa za rak dojke - 

dokazan je utjecaj FoxO3a putem regulacije ekspresije Bim na osjetljivost tumorskih stanica 

na paklitaksel (398), a FoxO1 može posredovati rezistenciju na adriamicin indukcijom 

ekspresije MDR1 (399). Prilagodba tumorskih stanica na kemoterapiju može biti posredovana 

FoxO induciranom reaktivacijom puta PI3K-AKT (400–402).  
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Obzirom da su ranija istraživanja uputila na povišene razine akvaporina u tumorima 

(247,272,285), pretpostavili smo da tumorske stanice regulacijom ekspresije akvaporina i 

posljedično regulacijom antioksidacijske zaštite mogu razviti ili pojačati rezistenciju na 

citostatike i oksidacijski stres. Regulacija rezistencije na terapiju i oksidacijski stres 

potencijalno bi se ostvarivala finom regulacijom koncentracije H2O2 putem peroksiporina, 

akvaporina koji mogu prenositi H2O2 preko membrane. Regulacija koncentracije H2O2 može 

potaknuti signalne puteve koji potiču  proliferaciju, a nisu previsoka da bi uzrokovale 

nepovratna oštećenja stanice. Na temelju navedenih pretpostavki definirana je hipoteza rada, 

odnosno da će kemoterapijom i bioterapijom izazvani oksidacijski stres uzrokovati porast 

ekspresije AQP3 i AQP5 u ostatnim tumorima i stromi nakon provedene neoadjuvantne 

citostatske terapije u odnosu na inicijalne uzorke tumorskog tkiva, što bi trebalo korelirati s 

odgovorom na terapiju. Također, u uzorcima ostatnih tumora nakon sustavne terapije 

očekivala se viša razina transkripcijskih faktora koji reguliraju komponente antioksidacijske 

zaštite, NRF2 i FOXO1, u okviru odgovora na oksidacijski stres. 

Hipoteza je istražena kroz određivanje ekspresije AQP3, AQP5, NRF2 i FOXO1 u uzorcima 

tumorskog tkiva prije i poslije kemoterapije. Obzirom na dokazanu interakciju tumorskih 

stanica i stanica strome, određivana je ekspresija AQP3, AQP5, NRF2 i FOXO1 i u stromi. 

Kako bi se istražila povezanost izraženosti AQP3 i AQP5 i odgovora na terapiju, usporedio se 

postotak pozitivnih tumorskih stanica na AQP3 i AQP5 u inicijalnoj biopsiji i operativno 

odstranjenom ležištu tumora nakon provedene terapije. U inicijalnim uzorcima je manje od 

20% stanica bilo pozitivno na AQP3 i nije bilo razlike u izraženosti kod inicijalnih uzorka iz pCR 

i non-pCR skupine. Ovaj rezultatu upućuje da je inicijalna razina AQP3 u tkivu i tumoru dojke 

relativno niska. Također,  možemo zaključiti da početna razina AQP3 ne utječe na terapijski 

odgovor te da se njegova ekspresija  može pojačati tijekom sustavne terapije. Rezultati 

upućuju da bi transkripcija antioksidacijskog transkripcijskog faktora i promatranih 

akvaporina tijekom kemoterapije mogla biti odgovorna za rezistenciju, odnosno slabiji 

terapijski odgovor. Nadalje, u uzrocima nakon provedene terapije uočava se značajan porast 

AQP3 u ostatnom tkivu tumora u odnosu na inicijalnu biopsiju u skupini nepotpunog odgovora 

na terapiju (non-pCR), dok se kod potpunog odgovora ne nalazi pozitivnih stanica. Međutim, 

kod potpunog odgovora na terapiju nije bilo ostatnog tkiva tumora. Ovi rezultati  upućuju na 
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procese kojima se povećava ekspresija AQP3 kao rezultat primijenjene terapije. Također, 

rezultati ukazuju i na moguću ulogu AQP3 u razvoju otpornosti na kemoterapiju.  

Imunohistokemijsko bojenje AQP5 pokazuje sličan obrazac kao i AQP3 u odnosu na ishod 

provedene terapije, s time da su inicijalne razine AQP5 niže nego AQP3. Razine AQP5 izrazito 

su se povećale kod nepotpunog odgovora na terapiju (9% u inicijalnoj biopsiji, 56% u ostatnom 

tumoru). Kao i kod AQP3, terapija pokreće stanične odgovore koji dovode do povećanja AQP5 

nakon provedene terapije u skupini nepotpunog odgovora na terapiju (non-pCR) što također 

ukazuje na moguću ulogu AQP5 u razvoju otpornosti na kemoterapiju. Iako se u literaturi ne 

nalaze podaci kako terapija utječe na razine ovih akvaporina, ni na in vitro, na in vivo 

modelima, ni na kliničkim uzorcima, povećane razine AQP3 i AQP5 koreliraju s lošijim 

preživljenjem kod pacijentica s trostruko negativnim rakom dojke(412). 

Uz ekspresiju AQP3 i AQP5 u stanicama tumora, htjeli smo ispitati i ekspresiju u stromi kako 

bi istražili povezanost izraženosti AQP3 i AQP5 i odgovora na terapiju. Stoga se usporedio 

postotak pozitivnih stanica strome na AQP3 i AQP5 u inicijalnoj biopsiji i operativno 

odstranjenom tkivu nakon provedene terapije. Zanimljivo, stanice strome imale su izrazito 

nisku ekspresiju AQP3, manje od 5% stanica je pozitivno na ovaj akvaporin. Također, AQ5 je 

bio jače izražen u stromi u odnosu na AQ3, kako u inicijalnim, tako i u postoperativnim 

uzorcima. Zanimljivo, iako nije bilo razlike u postotku pozitivnih stanica prije primijenjene 

terapije kod potpunog i nepotpunog odgovora na terapiju, u uzorcima u kojima je postojalo 

ostatno tumorsko tkivo nakon sustavne terapije (non-pCR) zabilježen je značajan porast 

ekspresije oba ispitivana akvaporina u stromi. Ovi rezultati se slažu s rezultatima na tumorima 

što upućuje na regulaciju akvaporina terapijom uz moguću ulogu AQP3 i AQP5 u razvoju 

rezistencije na kemoterapiju. U stromi su puno izraženije promjene AQP5 (sa 7 % na 55 % 

pozitivnih stanica), što sugerira vrlo značajnu ulogu stromalnog AQP5 u stvaranju rezistencije 

na terapiju. Također, u skupini potpunog odgovora na terapiju, stanice strome bile su 

negativne na AQP3, dok su kod nepotpunog odgovora  stanice strome bile su AQP3 pozitivne 

uz porast broja pozitivnih stanica nakon terapije, upućujući i na ulogu stromalnog AQP3 u 

razvoju rezistencije.  

Nakon što je analizirana povezanost ekspresije AQP3 i AQP5 s ishodom terapije, ispitano je 

postoji li razlika u ekspresije između imunofenotipa tumora dojke, kako bi se odgovorilo na 

pitanje postoji li potencijal za akvaporine kao mogućeg razlikovnog faktora. Istraživanjem 
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povezanosti AQP3 i AQP5 s imunofenotipom tumora,  dokazan je značajan porast ekspresije 

AQP3 i AQP5 u tumorskim stanicama oba imunofenotipa nakon provedene neoadjuvantne 

terapije. Također, nakon provedene neoadjuvantne terapije dokazana je značajno veća 

ekspresija AQP5 kod trostruko negativnih tumora dojke (69%) u odnosu na HER2 pozitivne 

tumore (28%). S druge strane, ekspresija AQP3 kod HER2 pozitivnih i trostruko negativnih 

tumora bila je podjednaka.  Ovi rezultati pokazuju kako terapija, vjerojatnije kemoterapija 

koju primaju obje grupe pacijentica, povećava postotak stanica pozitivnih na AQP3 i AQP5. 

Također, je zanimljivo da je kod pacijentica s trostruko negativnim tumorom dojke postotak 

AQP5 pozitivnih značajno viši od HER2 pozitivnih pacijentica. 

Sljedeće je ispitana povezanost izraženosti AQP3 i AQP5 u stanicama strome u inicijalnoj 

biopsiji i operativno odstranjenom ležištu tumora ovisno o imunofenotipu. Zanimljivo, kod 

oba imunofenotipa je ekspresija AQ5 u stromi znatno viša u odnosu na AQP3, kod kojeg je 

postotak pozitivnih stanica manji od 5%. Slijedom izrazito niske ekspresije AQP3 u stromi oba 

imunofenotipa, nije bilo statističke razlike u ekspresiji AQP3 u odnosu na imunofenotip ili 

terapiju. Međutim, kod AQP5 zabilježen je značajan porast ekspresije u stromi nakon sustavne 

terapije kod oba imunofenotipa. Također, ovi rezultati prate pojavu AQP5 u tumorskim 

stanicama pa je tako udio stanica s povišenom ekspresijom AQP5 nakon sustavne terapije bio 

značajno veći u stromi trostruko negativnih tumora u odnosu na HER2 pozitivne tumore. 

Navedeni rezultati sugeriraju vrlo značajnu ulogu AQP5 kao dominantnog peroksiporina koji 

porastom ekspresije i izbacivanjem vodikovog peroksida pridonosi kontroli razine 

oksidacijskog stresa tijekom kemoterapije, a samim time rezistenciji tumora i posljedičnoj 

progresiji bolesti. Porast AQP3 je prisutan, ali manjeg razmjera u odnosu na AQP5, te je 

vjerojatnije rezultat većih energetskih zahtjeva tumorskih stanica tijekom kemoterapije - 

AQP3 je akvagliceroporin te, uz vodu i vodikov peroksid, omogućava prolazak glicerola kroz 

staničnu membranu u oba smjera (281,282). Ulazak glicerola u stanicu preko AQP3 rezultira 

stvaranjem ATP-a (290) čime potpomaže rast tumora omogućujući izvor energije. 

 

Obzirom da je uočeno povećanje izraženosti AQP3 i AQP5 u tumoru nakon provedene 

neoadjuvantne sustavne terapije posebice kod nepotpunog odgovora na terapiju te kod oba 

promatrana imunofenotipa tumora, pacijenti su raščlanjeni po imunofenotipu i odgovoru na 

terapiju. Analizom izraženosti AQP3 u HER2 pozitivnim tumorima dokazan je porast ekspresije 
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AQP3 u ležištu tumora kod potpunog patohistološkog odgovora u odnosu na nepotpuni. 

Također, porast izraženosti AQP3 uočen je kod HER2 pozitivnih tumora kod kojih je postignut 

pCR. Iako se na prvi pogled može činiti neočekivanim da se kod potpunog odgovora na terapiju 

bilježi pozitivnost u preostalim stanicama, ta se pozitivnost odnosi isključivo na in situ 

komponentu (DCIS), čime su kriteriji potpunog patohistološkog odgovora (pCR) i dalje u 

potpunosti zadovoljeni. Kod trostruko negativnih tumora pokazan je porast ekspresije AQP3 

u stanicama tumora kod kojih nije postignut potpuni patohistološki odgovor. Zanimljivo, Zhu 

i suradnici pokazali su da kod pacijentica s trostruko negativnim tumorima dojke veća 

ekspresija AQP3 korelira sa lošijom prognozom (287). U našem istraživanju liječenje 

pacijentica se odvijalo po drugačijem kliničkom protokolu, skupljani su uzorci prije i poslije 

provedene terapije, dok u njihovom istraživanju nije naveden točan klinički protokol koji su 

pacijentice podvrgnute, samo je navedeno da su pacijentice operirane. Slična je situacija i kod 

ranog HER2 pozitivnog tumora dojke, gdje se AQP3 pokazao kao neovisni biljeg za preživljenje 

(DFS, engl. Disease Free Survival i OS, engl. Overall Survival) (273). 

U našem istraživanju AQP5 je pokazao veće  razlike prije i poslije terapije u odnosu na AQP3. 

Analiza je pokazala značajan porast izraženosti AQP5 nakon sustavne terapije i kod ostatnih 

HER2 pozitivnih (s 8 % na 42 %) i trostruko negativnih (s 10 % na 69 %) tumora. Porast 

izraženosti AQP5 nakon sustavne terapije bio je najveći kod ostatnog trostruko negativnog 

tumora u odnosu na inicijalnu biopsiju, a zanimljivo je da je izraženost AQP5 statistički 

značajna u odnosu na HER2 pozitivne tumore (69 % vs 42 %). Očekivano, budući da nema 

stanica tumora, u slučajevima potpunog patohistološkog odgovora, u ležištu tumora nakon 

sustavnog liječenja trostruko negativnih tumora nije pronađena ekspresija ni AQP3 niti AQP5. 

Ostatni HER2 pozitivni tumori imali su značajno višu ekspresiju AQP5 u odnosu na ostatne 

tumorske stanice HER2 tumora (ostatni DCIS) koji su zadovoljili kriterije potpunog 

patohistološkog odgovora (42 % vs 7 %). Također, analizirana je ekspresija AQP3 i AQP5 u 

stromi ovisno o patohistološkom odgovoru i imunofenotipu.  

Ekspresija AQP3 u stanicama strome kod oba imunofenotipa bila je niska, i prije i poslije 

sustavnog liječenja. Nasuprot AQP3, AQP5 je pokazao značajnu dinamiku kod oba fenotipa. 

Zabilježen je značajan porast ekspresije AQP5 nakon sustavne terapije za oba imunofenotipa, 

s tim da je porast bio izraženiji kod trostruko negativnog tumora dojke u odnosu na HER2 
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pozitivne tumore (62 % vs 46 %). Pregled literature o pojavnosti akvaporina (niti 3 niti 5) u 

stromi tumora dojke nije dao rezultate. 

Budući da je izraženost dva promatrana perokisporina, AQP3 i AQP5, povišeni nakon 

provedene terapije, sljedeći korak je bio ispitati izražajnost i lokalizaciju transkripcijskog 

faktora NRF2 u stanicama tumora dojke u odnosu na odgovor tumora na terapiju. Do sada su 

studije pokazale kako je NRF2 povišen u jezgrama tumora dojke bez obzira na imunofenotip, 

dok su razlike među imunofenotipovima vidljive na stanicama strome(315). Rezultati ovog 

istraživanja nisu pokazali tako visoki postotak jezgri tumorskih stanica pozitivnih na NRF2 u 

inicijalnoj biopsiji, no nakon primijenjene terapije postotak NRF2-pozitivnih jezgri tumorskih 

stanica se značajno povećao, što ukazuje na porast transkripcijske aktivnosti NRF2 kao 

posljedicu provedene kemoterapije.  

Nadalje, kod tumora kod kojih je postignut pCR, ostatne stanice DCIS-a pokazale su značajno 

nižu ekspresiju NRF2 u jezgrama tumorskih stanica u odnosu na stanice ostatnih tumora. 

Obzirom da je kod ostatnih tumora izražajnost NRF2 u jezgri bila značajno veća nego u 

biopsijama istih, ovi rezultati ukazuju da NRF2 značajno sudjeluje u obrani tumorskih stanica 

i posljedično može imati značajnu ulogu u razvoju rezistencije na sustavnu terapiju. Potvrda 

ove hipoteze je u radu Xia i suradnika, koji su pokazali da aktivacija NRF2 u hipoksičnim 

uvjetima potiče ekspresiju ABCB1 pumpe te time posljedično sudjeluje u razvoju rezistencije 

na adriamicin (413). U citoplazmi tumorskih stanica izražajnost NRF2 se nije promijenila nakon 

sustavne terapije kod nepotpunog odgovora na terapiju. Međutim, kod potpunog odgovora 

na terapiju, pCR, zabilježen je najveći pad citoplazmatske razine NRF2 u ostatnim stanicama 

DCIS-a. Ovaj pad broja pozitivnih citoplazmi u ostatnim stanicama DCIS-a je izrazito zanimljiv 

nalaz te bi bio zanimljiv pravac istraživanja jer su to uzorci tumora koji je u potpunosti reagirao 

na terapiju. Poznavanje točnih mehanizama snižavanja zalihe NRF2 u citoplazmama tumorskih 

stanica je zanimljivo u smislu razumijevanja signalnih putova koji bi mogli biti ciljani terapijom 

kako bi se smanjio obrambeni mehanizam tumora. Usporedbom broja citoplazmi ostatnih 

tumora pozitivnih na NRF2 kod potpunog i nepotpunog odgovora na terapiju, kod 

nepotpunog odgovora nalazimo značajno više citoplazmi pozitivnih na NRF2, što upućuje na 

veće zalihe NRF2, zahvaljujući kojima se ove stanice uspješno brane od oksidacijskog stresa 

uzrokovanog kemoterapijom, a posljedično i povećanjem ABC pumpi koje dodatno izbacuju 

adriamicin iz stanica tumora.  
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Sukladno analizi akvaporina, i kod NRF2 smo ispitali izražajnost i lokalizaciju transkripcijskog 

faktora NRF2 u stanicama strome tumora dojke u odnosu na odgovor tumora na terapiju. U 

stanicama strome, izražajnost NRF2 u jezgrama prije sustavne terapije bila je, bez obzira na 

ishod terapije, izrazito niska, ispod 10%, što upućuje na nisku potrebu za aktivacijom NRF2 u 

stanicama strome prije sustavne terapije. Nakon kemoterapije, zabilježen je statistički 

značajan porast izražajnosti NRF2 u jezgrama stanica strome ostatnih tumora, što upućuje da 

kemoterapija djeluje i na stanice strome kao i na stanica tumora, na način da aktivira NRF2. 

Zanimljivo, pozitivnost jezgara stanica strome značajno je veća kod pacijentica s nepotpunim 

odgovorom u odnosu na pacijentice s potpunim odgovorom na terapiju. Također, u 

citoplazmama stanica strome ostatnih tumora kod nepotpunog odgovora na terapiju 

izražajnost NRF2 značajno je viša u odnosu na potpuni odgovor. Ovaj porast ekspresije NRF2 

u stanicama strome nakon kemoterapije upućuje na potencijalnu ulogu stanica strome u 

obrani od kemoterapije i moguće u razvoju rezistencije. Može se pretpostaviti da stanice 

strome transkripcijom ciljnih molekula NRF2 pomažu tumorskim stanicama u obrani od 

oksidacijskog stresa.  

Nadalje, ispitana je izražajnost i lokalizacija transkripcijskog faktora NRF2 ovisno o 

imunofenotipu tumora. Kod HER2 pozitivnih tumora vidljiv je porast izražajnosti NRF2 u 

jezgrama tumorskih stanica, ali nije statistički značajan. U citoplazmama HER2 pozitivnih 

tumora istovremeno je zabilježen statistički značajan pad izražajnosti nakon kemoterapije, što 

djelomično može biti rezultat translokacije NRF2 u jezgru, ali i smanjene transkripcije gena. 

Kod trostruko negativnih tumora dojke, zabilježen je porast izražajnosti NRF2 u jezgrama 

tumorskih stanica nakon kemoterapije, što upućuje na porast transkripcijske aktivnosti NRF2, 

odnosno antioksidacijske zaštite. Izražajnost NRF2 u citoplazmi nakon kemoterapije bila je 

značajno veća kod TNBC-a u odnosu na HER2 pozitivne tumore.   

Naše istraživanje nije pokazalo izraženost FOXO1 ni u tumorskim stanicama niti u stromi, 

sugerirajući ulogu FOXO1 kao tumor supresora kod TNBC i HER2 pozitivnog raka dojke.  

Naši rezultati pokazali su zanimljive promjene AQP3, AQP5 i NRF2 u stanicama tumora, a koje 

su vezane uz terapiju. Pretpostavka na početku istraživanja bila je da će se pokazati razlike u 

ekspresiji promatranih akvaporina i NRF2 između dva imunofenotipa, kao i između grupe s 

potpunim i nepotpunim odgovorom na terapiju. U inicijalnim biopsijama se pokazalo kako 

nema razlike među grupama, no druge analize pokazale su zanimljive trendove. Akvaporini se 
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povećavaju nakon terapije u stanicama tumora u svim grupama. Razlike u grupi s potpunim i 

nepotpunim odgovorom nakon terapije nisu usporedive kod tumorskih stanica, jer se kod 

potpunog odgovora ne nalaze tumorske stanice, ili su DCIS, što zadovoljava pCR kriterij. 

Međutim, razlike kod kriterija odgovora na terapiju mogu se vidjeti kod strome. Stroma, 

odnosno mikrookoliš tumora, sve više postaje važan čimbenik kod razvoja tumora kao i kod 

odgovora na terapiju (414). Danas se sve više govori o mikrookolišu tumora kao faktoru koji 

igra ključnu ulogu u razvoju i progresiji tumora. Znamo da stanice tumora mogu transformirati 

fibroblaste, imune stanice, adipocite i druge stanice u blizini tumora na način da potiču i 

podržavaju rast tumora(415). Važnost strome očituje se i u porastu istraživanja odnosa 

tumora i strome (engl. Tumor-Stroma Ratio, TSR i Tumor-Stroma Proportion, TSP) (415,416). 

Ova istraživanja ukazuju na potencijal mjerenja količine strome kao prognostičkog faktora, no 

ovi rezultati nisu jednoznačni i ovise o tipu tumora (417). I rezultati ovog istraživanja potvrđuju 

važnost strome posebice gledano na ekspresiju AQP3 i AQP5 kod grupe s potpunim 

odgovorom. Nakon terapije, u ostatnom tkivu nakon operacije stanice strome kod potpunog 

odgovora ne povećavaju ekspresiju ova dva akvaporina, dok su oni povišeni u stromi kod 

nepotpunog odgovora. Također, razlike u izraženosti AQP5 prate se i u odnosu na 

imunofenotip, gdje je kod trostruko negativnog tumora dojke on značajno povišen u odnosu 

na stromu HER2 pozitivnih tumora dojke. Zanimljivo, NRF2 u stromi ima vrlo slični trend u 

odnosu na odgovor na terapiju i na imunofenotip. 

Analiza korelacije pokazala je korelaciju između RCB i odgovora na terapiju kod oba 

imunofenotipa tumora potvrđujući time rezultate ove analize. Također, kod oba 

imunofenotipa nalazimo pozitivnu korelaciju RCB i APQ5 u stanicama tumora nakon operacije 

što ukazuje na lošiji terapijski odgovor i posljedično lošiju prognozu kod pacijentica s izraženim 

AQP5 nakon provedene terapije te AQP3 ukazuje da viša razina ovih proteina može predvidjeti 

manju vjerojatnost potpune remisije, što je u skladu s literaturom koja sugerira ulogu 

akvaporina u tumorskoj rezistenciji i progresiji (274,287,412). 

 Kod trostruko negativnog tumora dojke nalazimo više korelacija s RCB i odgovorom na 

terapiju u odnosu na HER2 pozitivne tumore, a posebice zajedničkih korelacija (pozitivnih s 

RCB i negativnih za pCR) što ukazuje na potencijal ovih molekula kao biomarkera, ali upućuje 

i na biološku značajnost kod rezistencije na terapiju. Posebice se tu ističu korelacije s RCB i 

odgovorom na terapiju kod strome nakon terapije.  Konačno, korelacije RCB i odgovora na 
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terapiju s parametrima strome ističu biološki značaj strome u odgovoru na terapiju i 

potencijalnu ulogu u razvoju rezistencije. 

Sumarno, rezultati ovog rada ukazuju da su promjene u ekspresiji akvaporina AQP3 i AQP5, 

kao i transkripcijskog faktora NRF2 povezane s mehanizmima prilagodbe tumorskih stanica 

kemoterapiju te su povezane s odgovorom na terapiju. Promjene ekspresije ovih molekula 

ukazuje na složenu mrežu međusobnih odnosa između redoks homeostaze, regulacije 

staničnog metabolizma i signalnih putova kojima tumorska stanica preživljava unatoč 

citotoksičnom djelovanju terapije. Rezultati upućuju na to da su akvaporini, osim ulogom u 

transportu vode i malih molekula, mogu biti važni sudionici u prijenosu redoks signala i 

regulaciji oksidacijskog stanja stanice. Također, njihova regulacija putem NRF2 mogla bi imati 

funkcionalnu važnost u održavanju stabilnosti tumora tijekom sustavne terapije. Nadalje, 

ekspresija u akvaporinima povezana je i s molekularnim podtipom tumora. Iako je kod oba 

istraživana podtipa tumora uočen porast ekspresije oba akvaporina, kod trostruko negativnih 

tumora je porast ekspresije AQP5 izraženiji, što ukazuje na različite mehanizme u uvjetima 

sustavne terapije. Uz promjenu akvaporina, aktivacija NRF2 povećava ekspresiju 

antioksidacijskih enzima i drugih komponenti obrambenog sustava, čime se potiče oporavak 

tumorskih stanica nakon terapije i stvaraju preduvjeti za razvoj rezistentnih klonova. Ova 

povezanost NRF2 i terapijskog odgovora ukazuje da upravo NRF2 može biti jedan od (glavnih) 

regulatora prilagodbe tumorskih stanica na kemoterapiju. 

Dobiveni rezultati ukazuju da akvaporini i NRF2 sudjeluju u razvoju kemorezistencije, koja je 

izuzetno složen niz procesa i međudjelovanja molekularnih sustava koji zajednički omogućuju 

tumorskoj stanici prilagodbu na stresne uvjete. Kemorezistencija je izrazito dinamičan proces 

koji uključuje promjene metabolizma, staničnih signalnih puteva, promjene u transkripcijske 

regulacije te promijenjenu redoks homeostazu, u koju spadaju promjene NRF2 i akvaporina. 

Ova kompleksnost je razlog ograničenog terapijskog učinka standardnih kemoterapijskih 

protokola kod određenih podtipova karcinoma dojke, pri čemu akvaporini čine dodatan faktor 

kojim se rezistencija ostvaruje. 

Identifikacija povezanosti ekspresije AQP3, AQP5 i NRF2 s terapijskim odgovorom predstavlja 

važan korak prema boljem razumijevanju bioloških mehanizama otpornosti na liječenje. Ovi 

rezultati naglašavaju potencijalnu primjenu akvaporina i transkripcijskog faktora NRF2 kao 

biomarkera za procjenu terapijske učinkovitosti, ali i kao mogućih terapijskih meta u budućim 



Ocje
na

 ra
da

 

u t
ije

ku

80 
 

pristupima liječenju karcinoma dojke. Posebno je zanimljiva mogućnost ciljane modulacije 

NRF2 čime bi se moglo utjecati na redoks ravnotežu tumorske stanice i povećati njezina 

osjetljivost na citotoksične lijekove. 

Zaključno, oksidacijski stres i s njim povezani signalni putevi i proteini, uključujući AQP3, AQP5 

i NRF2, čine važnu molekularnu osnovu prilagodbe tumorskih stanica na terapijski pritisak. 

Njihova međusobna povezanost potvrđuje da je rezistencija na kemoterapiju evolucijski 

proces koji omogućuje tumorskoj populaciji održavanje vitalnosti i preživljavanje u 

nepovoljnim uvjetima. Ova saznanja mogu poslužiti kao temelj za razvoj novih dijagnostičkih 

i terapijskih pristupa usmjerenih na prevladavanje kemorezistencije i poboljšanje ishoda 

liječenja bolesnica s karcinomom dojke. 
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6. ZAKLJUČCI 
 

U ovom radu istražili smo povezanost NRF2, kao glavnog antioksidacijskog transkripcijskog 

faktora, i transkripcijskog faktora FOXO1 s dva akvaporina, AQP3 i AQP5. Iz rezultata možemo 

izvući sljedeće zaključke: 

1. U trostruko negativnim i HER2+ tumorima dojke nema ekspresije transkripcijskog faktora 

FOXO 1. 

2. AQP3 i AQP5 povećavaju ekspresiju u stanicama tumora kod nepotpunog odgovora na 

terapiju, s time da AQP5 bilježi značajno veći porast ekspresije.  

3. Stroma pomoću AQP3 i AQP5 pomaže u obrani tumora od kemoterapije - oba akvaporina 

u stromi bili su povišeni kod nepotpunog terapijskog odgovora.  U stanicama strome, AQP3 je 

bio slabije izražen u odnosu na AQP5, kako u inicijalnim, tako i poslijeoperacijskim uzorcima. 

Kod nepotpunog odgovora na terapiju ekspresija oba akvaporina se povećala, dok kod 

potpunog odgovora na terapiju nije došlo do promjene ova dva akvaporina u stanicama 

strome.  

4.  Oba akvaporina imala su povećanu ekspresiju u tumorskim stanicama nakon kemoterapije 

kod oba imunofenotipa tumora (HER2+ i TNBC). Trostruko negativni tumori reagirali su 

značajno većim porastom AQP5. Porast AQP3 nakon sustavne terapije bio je kod oba 

imunofenotipa tumora podjednak. 

5. Stromalne stanice pokazuju vrlo sličnu dinamiku ekspresije akvaporina kao i tumorske 

stanice - U stanicama strome dokazana je značajno viša ekspresija AQP5 kod oba 

imunofenotipa raka dojke. Ekspresija AQP3 bila je niska kod oba imunofenotipa, kako prije, 

tako i poslije sustavnog liječenja. Nakon terapije, u stanicama strome zabilježen je značajan 

porast AQP5 za oba imunofenotipa, a taj je porast još izraženiji kod stanica strome kod 

trostruko negativnog raka dojke.  

6. AQP3 je značajno porastao u ostatnim in situ tumorskim stanicama HER2 pozitivnih tumora 

s patohistološki potpunim odgovorom (ostatni DCIS, zadovoljen kriterij potpunog 

patohistološkog odgovora- pCR) i kod trostruko negativnih tumora s nepotpunim odgovorom 

na terapiju (non-pCR). 
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7. Ekspresija AQP5 u stromi povezana je s terapijskim odgovorom. AQP3 u stromi je nizak. 

Ekspresija AQP5 u stromi povećala se nakon sustavne terapije u ostatnim tumorima kod oba 

imunofenotipa, s tim da je porast bio nešto izraženiji kod TNBC u odnosu na HER2+ tumore. 

Kod potpunog odgovora, ekspresija AQP5 u stromi ostala je niska i kod trostruko negativnih i 

HER2+ tumora. AQP3 u stromi ima nisku ekspresiju neovisno o imunofenotipu i terapijskom 

odgovoru. 

8. Ekspresija NRF2 bila je povećana u jezgrama tumorskih stanica kod ostatnih tumora nakon 

kemoterapije kod nepotpunog odgovora. Kod tumora kod kojih je postignut pCR, ostatne in 

situ tumorske stanice pokazale su značajno nižu ekspresiju NRF2 u jezgri u odnosu na stanice 

ostatnih tumora. 

9. U stanicama strome nakon kemoterapije evidentiran je porast ekspresije NRF2 u jezgrama 

kod nepotpunog odgovora na terapiju. Izražajnost NRF2 je značajno veća kod stanica strome 

u non-pCR grupi odnosu na stanice strome pCR skupine.  

10. Ostatni HER2+ tumori nisu imali povišenu ekspresiju NRF2 u jezgri.  

11. Ostatne tumorske stanice kod trostruko negativnih tumora imale su povećanu ekspresiju 

NRF2 u jezgrama nakon kemoterapije.  

12. AQP5 u tumoru je povezan s lošijim odgovorom na terapiju. AQP5 u tumoru pozitivno 

korelira s RCB što ukazuje da bi povećana ekspresija AQP5 mogla biti povezana s lošijim 

odgovorom na terapiju. AQP5 u tumoru i stromi u biopsiji snažno su povezani, što može 

sugerirati stabilnu i usklađenu regulaciju ovog akvaporina unutar tumorskog mikrookoliša. 

14. Povezanost NRF2 i Ki67 sugerira funkcionalnu vezu između oksidacijskog odgovora i 

proliferativne aktivnosti tumorskih stanica – dokazana je pozitivna korelacija ekspresije NRF2 

i Ki67.  

15.  AQP3 u tumoru i stromi pokazuju usklađenu ekspresiju, što može odražavati zajedničku 

regulaciju akvaporina u tumorskom tkivu 
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7. SAŽETAK 
 

Karcinom dojke najčešći je karcinom u žena i čini četvrtinu svih novih slučajeva raka u žena u 

Hrvatskoj. Unatoč velikom napretku u dijagnostici i terapiji, posebno uvođenjem bioterapije i 

imunoterapije, smrtnost i dalje ostaje visoka kod agresivnih podtipova bolesti. Najveći 

problem liječenja je razvoj rezistencije na sustavnu terapiju, koja je povezana s 

antioksidacijskom obranom tumora i sposobnošću tumorskih stanica da se prilagode 

terapijskom stresu. Stoga je razumijevanje molekularnih mehanizama koji tome doprinose 

ključno za poboljšanje ishoda liječenja i identifikaciju novih terapijskih meta. U ovom 

istraživanju usporedili smo ekspresiju AQP3 i AQP5, te transkripcijskih faktora NRF2 i FOXO1 

prije i poslije neoadjuvantnog sustavnog liječenja kod agresivnijih tumora, trostruko 

negativnih i HER2+ karcinoma. Akvaporini, osim uloge u transportu vode, sudjeluju i u 

prijenosu glicerola i vodikovog peroksida, što ih čini važnima u procesima preživljavanja 

stanica pod terapijskim stresom. Transkripcijski faktori NRF2 i FOXO1 ključni su regulatori 

staničnog odgovora na oksidativni stres te balansiraju između poticanja apoptoze i aktivacije 

mehanizama zaštite tumorskih stanica. Naši rezultati pokazali su povišenu ekspresiju 

akvaporina u ostatnim tumorima nakon sustavne terapije, što ukazuje na značajnu ulogu ovih 

molekula u preživljavanju i proliferaciji tumorskih stanica, ali i u mogućem razvoju terapijske 

rezistencije. U stromi je dokazan porast izražajnosti AQP5 nakon terapije, što bi moglo 

ukazivati na njegovu ključnu ulogu u reakciji stromalnih stanica na terapiju. Porast ekspresije 

AQP5 bio je značajniji kod TNBC, što može upućivati na različite mehanizme odgovora na 

sustavnu terapiju u različitim podtipovima tumora dojke. NRF2, transkripcijski faktor uključen 

u odgovoru na oksidativni stres, bio je značajno povišen u jezgrama tumorskih stanica kod 

ostatnih tumora, sugerirajući njegovu ulogu u aktivaciji obrambenih mehanizama i razvoju 

otpornosti na terapiju. Povećana citoplazmatska ekspresija NRF2 u stromi ostatnih tumora 

dodatno potvrđuje ulogu strome u rezistenciji tumora na sustavnu terapiju. Istraživanje nije 

pokazalo izraženost FOXO1, što sugerira ulogu FOXO1 kao tumor supresora kod TNBC i HER2 

pozitivnog raka dojke. Otkrivene dinamike AQP3 i AQP5 te NRF2 ukazale su na njihovu 

značajnu ulogu u kemorezistenciji agresivnih tumora dojke te bi se mogle koristiti kao temelj 

daljnjih istraživanja ovih biomolekula kao prognostičkih pokazatelja, ali i kao ciljnih molekula 

čijom bi se modulacijom postigao bolji terapijski odgovor i preživljenje agresivnijih karcinoma 

dojke.  
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8. SUMMARY 
Breast cancer is the most common malignancy in women and accounts for one quarter of all 

newly diagnosed cancers in women in Croatia. Despite considerable advances in diagnostics 

and therapy, particularly with the introduction of biotherapy and immunotherapy, mortality 

remains high in aggressive subtypes of this disease. The major challenge is the development 

of therapy resistance, which is associated with the tumor’s antioxidative defense 

mechanisms and the ability of cancer cells to adapt to therapy-induced stress. Therefore, 

understanding the molecular mechanisms that contribute to this process is crucial for 

improving treatment outcomes and identifying new therapeutic targets. Here, we compared 

the expression of AQP3 and AQP5, as well as the transcription factors NRF2 and FOXO1, 

before and after neoadjuvant systemic therapy in triple-negative and HER2+ breast cancers. 

In addition to their role in water transport, aquaporins are also involved in the transport of 

glycerol and hydrogen peroxide, making them important contributors to cell survival under 

therapeutic stress. The transcription factors NRF2 and FOXO1 are key regulators of the 

cellular oxidative stress response, balancing between the induction of apoptosis and the 

activation of protective mechanisms in tumor cells. Our results demonstrated increased 

aquaporin expression in residual tumor cells following systemic therapy, indicating a 

significant role of these molecules in tumor cell survival and proliferation, as well as in the 

potential development of therapy resistance. In the stroma, an increase in AQP5 expression 

was observed after therapy, suggesting important role in stroma therapy response. The 

increase in AQP5 expression was more pronounced in TNBC, which may point to different 

mechanisms of response to systemic therapy among various breast cancer subtypes. 

NRF2, a transcription factor involved in oxidative stress response, was significantly 

upregulated in the nuclei of tumor cells in residual tumors, suggesting its role in activating 

defense mechanisms and promoting therapy resistance. Enhanced cytoplasmic expression 

of NRF2 in the stroma of residual tumors further supports the importance of the tumor 

microenvironment in systemic therapy resistance. The study did not show noticeable FOXO1 

expression, which suggests its tumor suppressive role in TNBC and HER2-positive breast 

cancer. The identified dynamics of AQP3 and AQP5 and NRF2 highlight their important role 

in chemoresistance of aggressive breast tumors. Further, it could serve as a basis for further 
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research of these biomolecules as prognostic indicators as well as potential therapeutic 

targets, whose modulation may lead to improved treatment response and survival in 

aggressive breast cancer. 
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