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1. Introduction  

 

The immune system is a complex system of cellular and humoral components that protects an 

organism against other organisms or substances that might cause infection or disease. Its ability to 

recognize foreign structures and eliminate them via different molecular and cellular mechanisms 

makes immune system critical for all individuals. Although some important features of immune 

system have remained the same trough millions of years of evolution and are common for all species, 

numerous changes have taken place during evolution to enable generation of variability and 

specialization. Therefore, as new taxonomic categories appeared over time, the immune response 

experienced recasting. Most notably, while invertebrates relied entirely on nonadaptive innate immune 

system, vertebrates have developed a new memory-based immune response known as adaptive 

immunity (McFall-Ngai 2007; Flajnik and Du Pasquier 2008).  

Fish, as the first vertebrate group appearing in evolution after adaptive radiation during the Devonian, 

represent the most successful and diverse group of vertebrates (Tort et al. 2003). This heterogeneous 

group is divided into three superclasses: Agnatha (jawless fish such as the hagfish and lampreys), 

Chrondrichthyes (cartilaginous fish such as sharks, rays and skates) and Osteichthyes (bony fish) 

(Zapata et al. 1996). Bony fish are further divided into two major classes: Sarcopterygii (lobe-finned 

fish) and Actinopterygii (ray-finned fish). The teleosts or Teleostei (from Greek: teleios; complete, 

osteon; bone) are the larges infraclass in the class Actinopterygii and accounts for 96% of all fish. The 

members of this group are arranged in about 40 orders and 448 families with over 26,000 species 

described (Benton 2005; Neara et al. 2012). The main reason why teleost fish are by far the most 

species-rich vertebrate clade is the whole-genome duplication (WGD) event that happened early in the 

life of ray-finned fish, about 350 to 450 million year ago (Volff 2005; Glasauer and Neuhauss 2014). 

The teleost-specific (TS) WGD resulted in discovery of numerous novel or semi-novel genes and 

functions in fish, known as “more genes in fish than mammals” concept (Ohno 1970). Large scale 

teleost genome analysis has revealed numerous gene duplications that are considered to originate from 

the WGD (Stein 2007). After WGD, duplicated genes go through different scenarios. First scenario is 

https://en.wikipedia.org/wiki/Actinopterygii
https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wikipedia.org/wiki/Class_(biology)
https://en.wikipedia.org/wiki/Actinopterygii
https://en.wikipedia.org/wiki/Fish
https://en.wikipedia.org/wiki/Order_(biology)
https://en.wikipedia.org/wiki/Family_(biology)
http://www.ncbi.nlm.nih.gov/pubmed/?term=Glasauer%2520SM%255BAuthor%255D&cauthor=true&cauthor_uid=25092473
http://www.ncbi.nlm.nih.gov/pubmed/?term=Neuhauss%2520SC%255BAuthor%255D&cauthor=true&cauthor_uid=25092473
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non-functionalization of one gene duplicate due to the lack of selective restriction on preserving both 

duplicates. Second scenario is preservation of duplicates due to subfunctionalization (partitioning of 

ancestral gene functions between duplicates), neofunctionalization (assigning a novel function to one 

of the duplicates) and dosage selection (preserving genes to maintain dosage balance between 

interconnected components) (Glasauer and Neuhauss 2014). As genetic diversity translates to protein 

diversity, it is very likely that among all conserved functions in teleost fish there are still a lot of 

hidden, unique functionalities, many of which are now starting to be unraveled (Aoki et al. 2008). 

Ultimately, TS-WGD has endowed teleosts with diversification potential that can become beneficial 

long after WGD, e.g. during phases of environmental change (Glasauer and Neuhauss 2014). 

The last decade has yielded significant advances in the understanding of inflammatory responses of, 

most of all, bony fish. In a number of fish species, the genes encoding hallmark immune molecules 

have been identified and characterized revealing high similarity to their higher vertebrate counterparts, 

which places this group in apparent crossroads between the innate and the appearance of the adaptive 

immune responses (Tort et al. 2003; Grayfer and Belosevic 2012). 

This thesis represents the first insight into the structure and expression profiles of key innate immune 

genes in Atlantic bluefin tuna Thunnus thynnus, as one of the largest, long-lived, predatory fish 

species with tremendous value for Mediterranean aquaculture. 

1.1. The immune system of teleost fish 

Fish immune system, as in other vertebrates, can be divided into innate (non-specific) immunity and 

adaptive or acquired (specific) immunity. Both innate and adaptive immune responsee can be divided 

into cell mediated response and humoral (soluble) factors. As an initial line of defense against 

infection, innate immune response precedes adaptive immune response, activating it and modulating 

its nature. Innate and adaptive immune responses collaborate in the maintenance of homeostasis and 

are now considered combinational systems (Magnadóttir 2006). Innate immune system responds in 

general fashion to broad array of foreign stimuli and is activated immediately or within hours of the 

pathogen’s appearance inside the host body. Therefore, it is a crucial factor in disease resistance 

(Secombes and Wang 2012). The adaptive response is commonly delayed but is crucial for long-

http://www.ncbi.nlm.nih.gov/pubmed/?term=Glasauer%2520SM%255BAuthor%255D&cauthor=true&cauthor_uid=25092473
http://www.ncbi.nlm.nih.gov/pubmed/?term=Neuhauss%2520SC%255BAuthor%255D&cauthor=true&cauthor_uid=25092473
http://www.ncbi.nlm.nih.gov/pubmed/?term=Glasauer%2520SM%255BAuthor%255D&cauthor=true&cauthor_uid=25092473
http://www.ncbi.nlm.nih.gov/pubmed/?term=Neuhauss%2520SC%255BAuthor%255D&cauthor=true&cauthor_uid=25092473
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lasting immunity due its ability to produce immunological memory, therefore is a key factor in the 

vaccine development and preventive function of vaccines (McHeyzer-Williams and McHeyzer-

Williams 2005; Sallusto and Lanzavecchia 2009; Secombes and Wang 2012). Immune response is 

mediated by the complex network of immune cells and soluble mediators. In order to function in the 

most effective manner, cells of the immune system are organized in tissues and organs collectively 

referred to as the lymphoid system. 

1.1.1. Immune organs in fish 

In higher vertebrates, organs and tissues of the immune system are categorized according to the role 

they play in the immune response. In mammals, the thymus, foetal liver and bone marrow are primary 

(generative or central) lymphoid organs which support the development of immune cells by producing 

hematopoietic cells involved in host defense (Secombes and Wang 2012). These cells originate from 

single undifferentiated type of cells called stem cells, which are able to develop into any other 

hematopoietic cell. Through the process of hematopoiesis, hematopoietic cells give rise to all other 

blood cells, and are classified into three lineages: myeloid lineage (monocytes/macrophages, 

neutrophilic, basophilic and eosinophilic granulocytes, thrombocytes, mast cells, dendritic cells (DC)), 

lymphoid lineage (B lymphocytes, T lymphocytes, natural killer (NK) cells) and erythroid lineage 

(erythrocytes and platelets) (Yates and Lyszak 2004). In mammals, secondary (peripheral) lymphoid 

organs comprise encapsulated systemic organs such as the spleen and lymph nodes, as well as non-

encapsulated lymphoid tissues associated with mucosal surfaces called mucosal associated lymphoid 

tissue (MALT). MALT includes GALT (gut-associated lymphoid tissue) in the intestinal tract, BALT 

(bronchus-associated lymphoid tissue) in the respiratory tract, and lymphoid tissue in the genitourinary 

tract (Randall 2010; Suzuki et al. 2010). Secondary lymphoid organs represent the site of lymphocyte 

activation by antigen, which is basically any substance derived form foreign microorganisms or host 

itself that causes an immune system to produce antibodies against it. 

Fish possess most generative and secondary lymphoid organs found in mammals, except the bone 

marrow and lymph nodes. The lymphoid organs of fish comprise (Figure 1.1) (Secombes and Wang 

2012; Biller-Takahashi and Urbinati 2014): 
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• thymus 

• head kidney 

• spleen 

• MALT (gut, gills and skin) 

 

 

 

 

 

 

 

Figure 1.1. Immune organs and their anatomical localization in teleost fish. The approximate site of immune 

organs is superimposed onto a rainbow trout (Oncorhynchus mykiss). Reused from Secombes and Wang (2012). 

 

The order in which different lymphoid organs develop as well as their development timeframe differs 

among fish species. In marine fish, the first lymphoid organ that develops is head kidney, followed by 

spleen and then the thymus. In contrary, in freshwater fish, the first organ to become lymphoid is the 

thymus, although the kidney can contain hematopoietic precursors prior to that event, but not 

lymphocytes (Zapata et al. 2006; Uribe et al. 2011). 

1.1.1.1. The thymus 

The thymus is a double organ located behind the operculum in the dorsolateral position of the gill and 

is lined by mucous tissue of the pharyngeal epithelium (Ellis 2001). Although it is usually found as a 

paired organ, in some teleost species the thymus can appear in more than one pair, like cing-fish 

(Sicyases sanguineus) which possess a pair of thymus glands in each gill chamber (Gorgollon 1983). 

Thymus plays a major role in the development of adaptive immune response of teleost fish, as it 

provides an inductive environment for the development of T cells from hematopoietic progenitor cells 
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(thymocytes) and their subsequent maturation (Bowden 2005; Biller-Takahashi and Urbinati 2014). In 

mammals, the thymus is organized into the outer lymphocyte-rich region (the cortex), and an inner, 

less cellular region (the medulla). T-cell progenitors enter the thymus through cortico-medullary blood 

vessel and can differentiate into natural NK cells, DC and T cell lineage (Secombes and Wang 2012). 

When maturation is finished, T lymphocytes exit thymic cortex, enter the bloodstream and seed 

peripheral lymphoid organs. The structure of fish thymus is highly variable between different species 

but also between developmental stages of one species. For example, while in many fish species, such 

as salmonids, there is no clear differentiation between cortex and medulla as in higher vertebrates, 

zonation of turbot (Scophthalmus maximus L.) and Atlantic halibut (Hippoglossus hyppoglossus L.) 

thymus is very well observed (Tatner and Manning 1982; Fournier-Betz et al. 2000). On the other 

hand, in carp (Cyprinus carpio L.) zonation of the thymus occurs only later, during forth week post-

fertilization (Romano et al. 1999). 

1.1.1.2. The head kidney 

The head kidney in teleost fish can be considered as equivalent of a bone marrow in mammals as it is 

a major site of hematopoiesis (Zapata et al. 2006). The bone marrow in mammals represent the site 

where B cells originate and develop from hemtopoietic stem cells (HSCs). Development of B cells 

starts with differentiation of HSCs into multipotent progenitor cells, then common lymphoid 

progenitor cells, B-cell progenitor intermediates and finally naive B cells expressing surface 

antibodies (Ab), also known as immunoglobulins (Ig) (Santos et al. 2011). Since bone marrow is 

absent in fish, head kidney (pronephros) has taken over a role of central hematopoiseis and immune 

site. Hematopoiesis also occurs in trunk kidney (mesonephros), but to a lesser extent due its renal 

function. The fish kidney is shaped in a form of letter ‘Y’ and placed along the body above swimming 

bladder. Anterior part, head kidney, penetrates under the gills, while posterior part is extended along 

the vertebral column. The hematopoiesis that occurs in fish head kidney includes: 

• erythropoiesis  

• granulopoiesis 

• thrombopoiesis 
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• monopoiesis 

• lymphoplasmopoiesis 

As a result of different hematopoietic processes, fish head kidney is rich in numerous developmental 

stages of blood cells, including erythropoietic series (from proerythroblasts to young and mature 

erythrocytes), granulopoietic series (from myeloblasts to mature granulocytes), monopoietic series 

(from monoblasts to monocyte), lymphopoietic series (from lymphoblasts to large lymphocytes and 

small lymphocytes, and active and inactive plasma cells) and thrombopoietic series (from 

thromboblasts to thrombocytes) (Secombes and Wang 2012).  

Melano-machrophage centres (MMCs), often referred to as macrophage aggregates, are also present in 

fish head kidney. They represent distinctive groupings of pigment-containing cells normally located in 

the stroma of the hemopoietic tissue of the spleen and the kidney, although in some fish species, they 

can also be found in the liver (Agius and Roberts 2003). There are also reports of their occasional 

occurrence in gills, brain and gonads (Macchi et al. 1992). The key function of fish MMCs is that of 

‘metabolic dump’ for debris of effete or damaged cells, including red blood cells. No less important is 

its role in recognition and digestion of antigens (Agius and Roberts 2003). Fish MMCs can also be 

considered as primordial germinal centers (GC) found within secondary lymphoide organs of 

mammals and birds (Saunders et al. 2010). GCs represent specialized microenvironments where high-

affinity antibody-secreting plasma cells and memory B cells are produced as a result of interaction 

between antigen-specific B cells, follicular B helper T cells (Tfh) and specialized follicular dendritic 

cells (FDC) (Gatto and Brink 2010). Furthermore, GCs are an important site for affinity maturation, a 

process in which Tfh-activated B cells produce antibodies with increased affinity for antigens. The key 

initiator of antibody affinity maturation is activation-induced cytidine deaminase (AID), mutagenic 

enzyme responsible for modifying the specificity of B cells by producing point mutations at the 

antibody gene locus. These mutations ideally result in an increased affinity to exogenous antigens, but 

in some cases these mutations can produce or enhance a B cell's ability to target the host. Thus, B cells 

producing high-affinity antibodies must be selected over all other B-cells. This selection process 

occurs in the GCs. Two main evidence that fish MMCs and mammalian GCs are evolutionary related 
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are: successful labelling fish MMCs with antibody used for labelling mammalian FDCs (CNA-42) and 

expression of AID in fish cells that co-locate with MMCs (Vigliano et al. 2006; Saunders et al. 2010). 

Besides being hematopoietic-lymphoid organ, fish head-kidney represents an important endocrine 

organ, homologous to the mammalian adrenal gland. It contains interrenal endocrine cells that secrete 

cortisol, catecholamines (such as adrenalin and noradrenalin) and thyroid hormones important for 

modulation of osmoregulation, stress and immune response (Geven and Klaren 2017). 

1.1.1.3. The spleen 

In mammals, the spleen is the largest secondary lymphoide organ. It consists of blood vessels, 

ellipsoids, red pulp and white pulp. Ellipsoids are thick-walled capillaries derived from the splenic 

arterioles which than open in the pulp (Uribe et al. 2011). The first main function of the spleen is 

filtration of blood in search for pathogens and old or damaged blood cells, which occurs primarily in 

red pulp. Second function is initiation of immune response to blood-borne pathogens which is carried 

out in lymphocytes-rich white pulp (Bogen 2004). In fish, the spleen also represents important 

secondary lymphoid organ with the same components as in higher vertebrates, but with less defined 

red and white pulp. The red pulp is bigger and better developed then the white pulp, containing, within 

its sinusoids, diverse cell population such as macrophages and lymphocytes. The white pulp basically 

consists of MMCs and ellipsoids. Blood-borne pathogens are retained within ellipsoidal wall during 

plasma filtration and subsequently taken over by macrophages and transferred to MMCs for further 

elimination (Secombes and Wang 2012). 

1.1.1.4. MALT 

The aquatic ecosystem (freshwater or sea water) represents microbial-rich environment in constant 

contact with every mucosal epithelial surface of the fish body. Being exposed to a wide range of 

microbial populations, fish mucosal barriers have developed both innate and adaptive immune 

responses. However, not all microorganisms are threatening. Nevertheless, majority of them have 

positive effect on fish physiology. Thus, in order to maintain homeostasis and avoid immune response 
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against harmless antigens, the mucosal immune system favors tolerance rather than responsiveness 

(Salinas 2015; Salinas and Parra 2015). 

Every mucosal surface contains associated lymphoid tissues (MALT). So far, four different MALTs 

have been described in teleost fish: gut-associated lymphoid tissue (GALT), skin-associated lymphoid 

tissue (SALT), gill-associated lymphoid tissue (GIALT) and nasopharynx-associated lymphoid tissue 

(NALT) (Salinas et al. 2011; Gómez et al. 2013; Tacchi et al. 2014; Salinas and Parra 2015) (Figure 

1.2) 

 

 

 

 

 

 

 

Figure 1.2.  Schematic representation and anatomical localization of four main mucosa-associated lymphoide 

tissues (MALT) in teleost fish; NALT (nasopharynx-associated lymphoid tissue), GIALT (gill-associated 

lymphoid tissue), SALT (skin-associated lymphoid tissue) and GALT (gut-associated lymphoid tissue). Reused 

from Salinas (2015). 

 

In higher vertebrates, mucosal surfaces consist of inductive sites, involved in antigen sampling and 

stimulation of naive T and B lymphocytes, and effective sites where effector cells contribute to the 

antibody production (Brandtzaeg et al. 2008). The effective sites are present within MALT of all 

vertebrates and comprise unorganized, diffuse leukocytes disseminated along the mucosal surfaces, 

also known as diffuse MALT. The inductive sites comprise organized lymphoid structures, so-called 

organized MALT, which can only be found within the mucosal epithelia of endothermic vertebrates 

(Salinas 2015). Since teleost do not possess organized lymphoid tissue it is proposed that diffused 

MALT perform both inductive and effector functions (Parra et al. 2016). As an exemple, GALT will 

be described in more detail. 
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1.1.1.4.1. Gut-associated lymphoid tissue (GALT) 

The gastrointestinal tract (the gut) has a dual role: a digestion of nutrients and maintenance of the 

immune homeostasis. In mammals, GALT is composed of organized MALT, such as Payer’s patches 

or mesenteric lymph nodes and diffused MALT composed of dispersed effector cells at sites such as 

lamina propria or intraepithelial lymphocytes. The teleost GALT ultrastructure is less complex then in 

mammals, lacking Payer’s patches or mesenteric lymph nodes. The immune cells that can be found 

within lamina propria comprise macrophages, eosinophilic and neutrophilic granulocytes, T and B 

lymphocytes and plasma cells. On the other hand, the intraepithelial compartment contains mostly T 

cells and small number of B lymphocytes (Rombout et al. 2011; Salinas and Parra 2015; Salinas et al. 

2011).  

Teleost intestine can also be divided into three segments, based on the microscopial anatomy of its 

mucosa and the local absorptive cells, called enterocytes: the first segment with enterocytes considered 

as absorptive cells; the second segment with enterocytes characterized by large supranuclear vacuoles, 

irregular microvilli zone and high pinocytotic activity and strong take up of macromolecules, and the 

third segment with enterocytes with osmoregulatory function (Rombout et al. 2011). It is suggested 

that the second segment of teleost intestine plays a principal role in the uptake and processing of 

antigens (Rombout and van den Berg 1985). Furthermore, teleosts possess a type of cells that share 

morphological similarities with mammalian microfold cells (M cell) found mainly above the Peyer’s 

patches (Fuglem et al. 2010). In mammals, M cells are specialized in the uptake of antigens from 

intestine lumen and their transport to lymphoid tissues. In addition to teleost enterocytes and M cell-

like cells, large intraepithelial macrophages are also suggested to participate in antigen uptake from 

the lumen of the intestine (Chen et al. 2015). 

1.1.1.5. Liver as immune organ 

Beside its critical role in metabolism of proteins, carbohydrates and lipids, liver also represents an 

important immune organ. In mammals, the liver is a primary hematopoietic organ during the prenatal 

development. The immune cell population retained in postnatal liver comprise myeloid cell lineage 

and intrahepatic lymphocytes including B cells and T cells, NK cells and NK cells expressing T cell 
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receptor (NKT cells) (Nemeth et al. 2009). Although the immunological roles of fish liver are still 

understudied, emerging evidence suggests its active engagement in immune response. Fish liver is 

involved in immune regulation and gene expression following viral (Castro et al. 2014) and bacterial 

infection (Martin et al, 2010; Millán et al. 2011) with similar resident immune cell population as 

mammalian liver, i.e. myeloid cells, B and T lymphocytes (Moller et al. 2014).  

 

1.1.2. Innate immune system of fish 

The innate immune response can briefly be described as quick, relatively temperature-independent, 

non-specific protection that does not depend upon pathogen recognition (Ellis 2001) The innate 

immune system is unique for its specific receptors called pathogen recognition receptors or pattern 

recognition receptors (PRRs) which can distinguish 'infectious non-self' from the ‘non-infectious self'. 

This recognition system of innate immunity has its roots in ancient evolutionary history, dating from 

the time of Metazoa (Porifera) which evolved around a billion years ago. Activation of innate immune 

response is triggered by detection of exogenous or endogenous infectious agents by PPRs. Exogenous 

molecules that originate from pathogens are called pathogen associated molecular patterns (PAMPs) 

and can be divided to: bacterial PAMPs (which include bacterial cell wall components such as 

lipopolysaccharide (LPS) and peptidoglycan, flagellin, and bacterial DNA or RNA), viral PAMPs 

(which include the cytosolic compartment for viral genome amplification, mRNA metabolism and 

viral protein expression, as well as double-stranded and single-stranded non-capped RNA), and fungal 

PAMPs (which are associated with early germ tube formation and hyphal forms that express high 

levels of zymosan) (Wilkins and Gale 2010; Boltaña et al. 2011). Endogenous molecules released by 

damaged or stressed host cells are called danger-associated molecular patterns (DAMPs) and include 

proteins such as heat shock proteins, calgranulins, serum amyloid A and non-protein molecules such 

as uric acid, ATP, potassium efflux, ROS, and heparin sulphate (Paccinini and Midwood 2010).  

PRR families that have been identified so far include the C-type lectins (CLRs), the Toll-like receptors 

(TLRs), retinoic acid inducible gene I (RIG-I)-like receptors (RLRs), nucleotide binding 

oligomerization domain (NOD)-like receptors (NLRs) and absent in melanoma (AIM)-like receptors 

(ALRs) (Hansen et al. 2011). Basic structure of all PRRs is the same and consists of a protein domain 
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for recognizing PAMPs or DAMPs connected to a protein domain that interacts with downstream 

signaling molecules (Secombes and Wang 2012). Activated PRRs can trigger various innate immune 

responses including the complement cascade, apoptosis, leukocyte activation and migration, and 

production of inflammatory cytokines and interferons (Lee and Kim 2007). 

The innate immune system is commonly divided into three main components: physical barriers, 

cellular components and humoral factors.  

1.1.2.1. Physical barriers 

Fish scales and mucus of epidermal layer of skin, gills and gastrointestinal tract represent the first 

barrier against infectious microorganisms. Fish mucus is secreted by epidermal goblet cells whose 

main property is production of gel-forming glycoproteins called mucins. Main components of mucus 

are water and glycoproteins associated with wide range of functions such as excretion, ionic and 

osmotic regulation, respiration, reproduction and communication, but also disease resistance. Mucus 

has two important protection roles as a part of innate immune response. Beside the efficient prevention 

of pathogen adherence by being constantly produced and sloughed off, fish mucus also contains 

numerous innate immune factors including proteolytic enzymes (such as bacteriolytic enzyme 

lysozyme), complement proteins, lectins, antibacterial peptides and immunoglobulin IgM 

(Magnadóttir 2006; Subramanian et al. 2007). 

1.1.2.2. Cellular components of fish innate immune system 

A variety of cell types are actively involved in fish innate immune response including macrophages, 

granulocytes (e.g. neutrophils), non-specific cytotoxic cells (NCC) and natural killer (NK)-like cells. 

Mast cells and rodlet cells also play an important role in innate immune response (Secobes and Wang 

2012; Firdaus-Nawi and Zamri-Saad 2016). 

1.1.2.2.1. Macrophages  

Macrophages originate from hematopoietic progenitors by direct differentiation or via circulating 

blood monocytes (Hodgkinson et al. 2015). They are of great importance for immune response to 

pathogens and they contribute to the maintenance of homeostasis. Together with scavenger endothelial 
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cells, macrophages constitute mononuclear phagocytic system which eliminates both physiologic and 

foreign waste products from the circulation via endocytosis and phagocytosis (Whyte 2007; Secombes 

and Wang 2012). Furthermore, machrophages participate in three different homeostatic activities, i.e. 

host defense, wound healing and immune regulation, thus can be classified as classically activated, 

wound healing and regulatory macrophages, respectively (Mosser and Edwards 2008). Macrophages 

express various receptors on their cell surface, including PRRs such as TLRs and CLRs, scavenger 

receptors and complement receptors. They are also an important source of cytokines and chemokines, 

a potent signaling proteins which mediate effective immune response, link innate and adaptive 

immunity and in turn influence the macrophage’s microenvironment (Secombes and Wang 2012; 

Dauque and Descoteaux 2014) (more details about cytokines are given in Section 1.1.5). Macrophages 

are also essential for antigen presentation to cells of adaptive immune system, i.e. T cells, as they are 

one of accessory cells or antigen presenting cells (APCs) (Dauque and Descoteaux 2014) (more details 

about antigen presentation are give in Section 1.1.3.1).  

1.1.2.2.2. Neutrophils  

Neutrophils or neutrophilic granulocytes play a pivotal role in inflammatory immune response against 

a variety of bacterial, viral, protozoan and fungal pathogens, in most cases successfully removing them 

from the host organism (Secombes and Wang 2012). Guided by chemotactic factors released by 

injured tissue, neutrophils are the first granulocytes to appear at the injured site, followed by 

macrophages. At the site of injury, neutrophils destroy microorganisms through phagocytosis with 

proteolytic enzymes, antimicrobial peptides and cell damaging reactive oxygen species (ROS) (Biller-

Takahashi and Urbinati 2014). In addition, fish neutrophils can release extracellular fibers, called 

neutrophil extracellular traps (NET), composed of DNA, histones, and proteins which can bind and 

destroy bacteria, fungi and parasites, and inactivate viruses (Palić et al. 2007; Toledo-Ibarra et al. 

2013). 

1.1.2.2.3. Non-specific cytotoxic cells (NCC) and NK-like cells 

Cell-mediated cytotoxicity (CMC) represents one of the major protective immune defense 

mechanisms against viral diseases. Virus-infected cells can be recognized and processed by cells of 
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innate or adaptive immune system, thus CMC is also referred to as non-specific and specific, 

respectively (Utke et al. 2007). In mammals, non-specific CMC reactions are carried out mainly by 

natural killer (NK) cells. Fish also possess non-specific CMC mechanisms, performed by two types of 

NK cell homologues: non-specific cytotoxic cells (NCC) and NK-like cells. NK-like cells in fish are 

isolated from blood leukocytes and are shown to spontaneously kill allogeneic (cell type that is from 

the same species but genetically distinct), xenogeneic (cell types of different species and different 

genotypes) and virus-infected target cells (Fischer et al. 2006). On the other hand, NCCs are the most 

active in head kidney and spleen where they tend to target various cells including tumor cells, virus-

transformed cells and some protozoa. NCCs are able to spontaneously kill the affected cells through 

apoptotic and necrotic mechanisms (Firdaus-Nawi and Zamri-Saad 2016).  

1.1.2.2.4. Mast cells  

In mammals, mast cells play a central role in wound healing and angiogenesis, as well as in defense 

mechanisms, participating in both innate and adaptive immunity (Weller et al. 2011). Activated in vivo 

mast cells respond directly to pathogens by phagocytosis and ROS production, but also send signals to 

other tissues to modulate both innate and adaptive immune responses. Within seconds of stimulation, 

mast cells can undergo degranulation followed by production of pro- and anti-inflammatory cytokines, 

chemokines and heparin (Marshall 2004). Mast cells are a component of most teleost species innate 

immunity and are localized in the vicinity of blood vessels in the intestine, gills and skin (Sfacteria et 

al. 2015). Increased number of mast cells in tissues and organs of teleosts is associated with a variety 

of stress conditions including exposure to heavy metals and herbicides, parasitic infections and 

chronic inflammation (Lauriano et al. 2011). Mast cells degranulation, release of cytokines and 

subsequent inflammatory reaction, has also been shown in teleost fish following bacterial infection 

(Reite and Evensen 2006). 

1.1.2.2.5. Rodlet cells 

Rodlet cells are unique type of cells in fish, characteristic for their cytoplasmic inclusions, so-called 

rodlets, and a thickened capsule-like cell border (Siderits and Bielek 2009). Although there are some 

suggestions that rodlet cells only have secretory function (Mendonca et al. 2005), the close 
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relationship between the presence of infectious agents and the presence of rodlet cells indicates that 

they also have a defensive role in teleost fish, especially against parasitic helminths (Secombes and 

Wang 2012). 

1.1.2.3. Humoral factors of fish innate immunity 

Humoral factors comprise cell receptors or other molecules that are soluble in body fluids, such as 

plasma. Innate humoral defense of teleost fish includes various inhibitors of bacterial growth, such as: 

transferrin, lysozyme, C-reactive protein, alkaline phosphatase, antimicrobial peptides, complement, 

lectins. 

1.1.2.3.1. Transferrin (Tf) 

Transferrin (Tf) is a multifunctional protein involved in the regulation of iron metabolism, crucial for 

growth and survival. Tf binds and transports iron around the body via bloodstream, maintaining 

optimal levels of free iron and in that way controlling the balance between its beneficial and toxic 

effects (Kohgo et al. 2008; Garcia-Fernandez et al. 2011). As the the effector in innate immune 

response, Tf provides low free iron environment which limits survival of microorganisms and controls 

their infectiousness (Firdaus-Nawi and Zamri-Saad 2016).  

1.1.2.3.2. Lysozyme 

Fish lysozyme, as in higher vertebrates, is an important part of innate immune defense due to its 

significant antibacterial activity against both Gram-positive and Gram-negative bacteria. Being a 

glycoside hydrolase, lysozyme catalyzes the hydrolysis of glycosidic bonds of bacterial cell wall 

peptidoglycans which ultimately leads to its lysis. Lysozyme is produced by leukocytes (mainly 

monocytes and neutrophils) and can be found in mucus, lymphoid tissue, plasma and other body fluids 

of most fish species (Magnadóttir 2006; Firdaus-Nawi and Zamri-Saad 2016). In addition to its 

bactericidal function, fish lysozyme can also act as opsonin that within the process of opsonization 

chemically modifies microbes or apoptotic cells in order to provoke stronger immune response (i.e. 

enhances phagocytosis or activates the complement system) (Grinde 1989). 
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1.1.2.3.3. C-reactive protein 

C-reactive protein (CRP) was first found in the serum of patients with acute inflammation as a 

substance that reacted with the 'C' carbohydrate antigen of Pneumococcus sp. bacterium, thus named 

‘C-reactive’ protein (Firdaus-Nawi and Zamri-Saad 2016). In humans, CRP is a prime blood test 

marker for inflammation in the body. High concentrations of CRP can also be found in fish blood, 

eggs and mucus. As inflammation acute phase protein, CRP is able to bind to the pathogen and 

promote its opsonization and consequently complement activation and phagocytosis (Biller-Takahashi 

and Urbinati 2014). 

1.1.2.3.4. Alkaline phosphatase 

Alkaline phosphatase (AP) is a lysosomal enzyme and found in fish skin and intestinal mucus and 

blood serum (Nigam et al. 2012). High activity of fish AP is associated with stress conditions (Ross et 

al. 2000), parasitic infections (Fast et al. 2002) as well as wound healing (Rai and Mittal 1983).  

1.1.2.3.5. Antimicrobial peptides 

Antimicrobial peptides (AMP) are low molecular wight proteins that play a major role in innate 

immune defense against wide variety of bacteria, viruses and fungi by lytic or ionophoric (pore-

forming) functions (Smith et al. 2010). AMPs can be found in all areas of the body exposed to 

pathogens including mucus, circulatory system, gill tissue, liver. Beside their antimicrobial functions, 

AMPs also participate in inflammatory responses such as recruitment of neutrophils, promotion of 

mast cell degranulation and enhancement of phagocytosis (Plouffe et al. 2005). 

1.1.2.3.6. Complement 

The complement system is an important part of innate immune system and is responsible for 

promotion of inflammatory responses, pathogen elimination, clearance of apoptotic and necrotic cells, 

as well as for modulation of the adaptive immune responses, performed by more then 30 distinct 

plasma and membrane-associated proteins (Nakao et al. 2011; Secombes and Wang 2012). 

Mammalian and teleost complement systems are considered both structural and functional equivalents, 

except for the significantly wider distribution of complement components in teleost fish. While in 
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mammals complement components are mainly produced in the liver, in teleosts they can be found in 

head and renal kidney, intestine, gill, skin, brain and gonads (Løvoll et al. 2007). The complement 

system has three activation pathways: classical pathway (an antibody-dependent activation triggered 

by antigen-antibody complex), alternative pathway (activated by direct binding to cell surface 

molecules of microorganisms, not involving specific recognition) and lectin pathway (triggered by 

recognition of microbial surface carbohydrate) (Secombes and Wang 2012). Central components of 

complement system are C5a and C3b, able to trigger biological processes of opsonization resulting in 

recruitment neutrophils and macrophages, phagocytosis chemotaxis of leukocytes and inactivation of 

the released bacteria toxin (Biller-Takahashi and Urbinati 2014). 

1.1.2.3.7. Lectins 

Lectins are a group of proteins characterized by their ability to bind carbohydrates with high 

specificity (Nilsson 2007). In fish, lectins can be found in skin, gills, eggs, electric organ, stomach, 

intestine, liver and plasma (Ng et al. 2015). Lectins mediate pathogen recognition in the immune 

system leading to either establishment of mutually favorable interactions with harmless microbes, or 

activation of innate and adaptive responses against potentially pathogenic ones (Vasta et al. 2011). 

Fish egg lectins were also suggested to provide some protection to developing egg and preventing the 

transmission of pathogenic organisms from mothers to their offspring (Firdaus-Nawi and Zamri-Saad 

2016). They also participate in process of opsonisation as well as in other functions such as 

agglutination, fertilization, embryogenesis and morphogenesis (da Silva Lino et al. 2013).  

1.1.2.4. Inflammation 

The inflammation is a highly regulated protective response of body tissues to harmful stimuli, such as 

pathogens, damaged cells or irritants. It is considered an innate immune mechanism that involves 

immune cells, blood vessels, and molecular mediators. The primary role of inflammation is the 

resolution of tissue damage, which includes the elimination of initial cause of cell injury, removal of 

necrotic cells and tissues damaged during original insult and/or the inflammatory process and lastly, 

initiation of tissue repair and recovery of homeostasis (Grayfer and Belosevic 2012). The classical 

signs of inflammation are (Xiao 2017):  
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• redness - due to dilatation of small blood vessels within the damaged area 

• swelling - due to accumulation of fluid in the extravascular space and to some extent due to 

the accumulation of inflammatory cells 

• heat - due to increased blood flow resulting in vascular dilation and the delivery of warm 

blood to the area 

• pain - partially due to the stretching and distortion of swollen tissues and partially due to 

chemical mediators of acute inflammation such as bradykinin 

• loss of function - partly caused by conscious or reflective restraint of movement due to pain, 

and partly by physical immobilization due to severe swelling 

 

The general steps of inflammation are:  

a) vasodilatation and increased vascular permeability 

b) leucocyte migration and removal of debris 

c) resolution and healing 

The initial recognition of tissue damage and/or pathogens is mediated by resident immune cells such 

as macrophages and mast cells which express various PRRs on their surface. Upon activation, these 

cells release mediator factors, such as vasoactive amines, histamine and serotonin, in order to extend 

and make blood capillaries more permeable, allowing the migration of leukocytes. Granulocytes 

(mainly neutrophils, but also basophils and eosinophils) are the first cell type to arrive at the 

inflammation focus, being responsible for the removal of irritants, bacteria, or damaged cells and 

tissues through phagocytosis. The remaining pathogenic cells and cellular debris are phagocytosed by 

macrophages (Magnadóttir 2006). 

1.1.3. Adaptive immune system of fish 

The origin of the mammalian type of adaptive immune system appeared simultaneously with the 

appearance of jawed vertebrates (i.e. Gnathostomata), about 450 million years ago. The key events in 

the evolution of vertebrate immune system that enabled the development of adaptive immune system 

were the appearance of the thymus, B and T lymphocytes, RAG (recombination activation gene) 
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enzymes (Secombes and Wang 2012), and especially the development of unique mechanism of genetic 

recombination called V(D)J recombination (Firdaus-Nawi and Zamri-Saad 2016). Namely, in order to 

respond to great diversity of antigens, adaptive immune system must be capable of producing a large 

number of different immunoglobulins from a small number of coding genes. This is accomplished by 

V(D)J recombination, a process of antigen receptor random rearrangement of V(variable), D 

(diversity), J (joining) gene segments. V(D)J recombination occurs in the bone marrow (for B cells) 

and thymus (for T cells) during early stage of lymphocytes maturation. RAG1 and RAG2 are key 

components of the V(D)J recombination machinery. They initiate the recombination by cleaving DNA 

at the recombination signal sequence (RSS) site, and are subsequently involved in recombination of 

VDJ genes and final rejoining of DNA (Market and Papavasiliou 2003). V(D)J recombination, 

therefore, enables the generation of numerous and diverse immunoglobulin superfamily (IgSF) antigen 

receptors on cell membrane T lymphocytes (TCR - T cell receptor) and B lymphocytes (BCR – B cell 

receptor) (Hirano et al. 2011). Hence, the adaptive immune response is mediated by two major groups 

of lymphocytes; B lymphocytes that mediate humoral (antibody) responses and T lymphocytes that 

mediate cell-mediated immune responses.  

Adaptive immunity is triggered after the pathogen has evaded the innate immune system and 

generated an antigen threshold level leading to the activation of antigen presenting cells (APCs) 

(Janeway et al. 2001a). Adaptive immune system defense mechanisms comprise three major 

milestones: 

• recognition of specific antigen during the process of antigen presentation 

• generation of responses that will efficiently eliminate pathogen or pathogen-infected cells 

• development of immunological memory through generation of memory B and T cells 

1.1.3.1. Antigen presentation 

Antigen presentation is an immune process essential for T cell recognition of foreign antigens and 

activation of T cell-mediated immune response. Namely, while BCR recognizes antigens in their 

native form (Harwood and Batista 2010), TCR can recognize antigen only after it has been processed 

and bound as linear peptide fragments to a set of cell surface proteins called major histocompatibility 
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complex (MHC) on antigen presenting cells (APCs) (Janeway et al. 2001a). There are two classes of 

MHC molecules, termed MHC class I and MHC class II. MHC class I molecules possess β2 subunits 

and can only be recognized by CD8 (cluster of differentiation 8) co-receptors. CD8 is a 

transmembrane glycoprotein that serves as a co-receptor for the TCR of cytotoxic T cells (but can also 

be found on natural killer cells and  dendritic cells (DCs)) (Gao and Jakobsen 2000). On the other 

hand, MHC class II molecules comprise β1 and β2 subunits and can only be recognized by CD4 co-

receptors on T helper cells, monocytes, macrophages, and DCs. Thus, class of MHC molecules defines 

which type of lymphocytes may bind with high affinity to the presented antigen (Kambayashi and 

Laufer 2014; den Haan et al. 2014).  

APCs can also be divided into two categories: professional and non-prefessional. Professional APCs 

include macrophages, DCs and B cells. These cells digest pathogen either by phagocytosis 

(macrophages and DCs) or by receptor-mediated endocytosis (B cells), process the pathogen-derived 

antigen into peptide fragments and send them to cell surface where they are bound to MHC class II 

molecules. CD4+ T helper cells recognize and interact with the antigen-MHC class II complex on the 

membrane of the APCs leading to their activation and further differentiation (Kambayashi and Laufer 

2014). Exogenous antigens derived from exogenous pathogens, such as bacteria, parasites or toxins 

are usually processed by professional APCs (Janeway et al. 2001b; Kambayashi and Laufer 2014). 

Non-professional APCs include all cell types, with the exception of non-nucleated cells such as 

erythrocytes. They are specialized for processing endogenous antigens derived from intracellular 

bacteria and viruses and presenting them via MHC class I molecules to CD8+ cytotoxic T-cells (den 

Haan et al. 2014).  

1.1.3.2. The humoral adaptive immune response in fish 

1.1.3.2.1. B cells 

Humoral immunity is mediated by B lymphocytes whose main functions include: antigen presentation 

as one of professional antigen presenting cells (APCs), production of antibodies against antigens and 

development of immunological memory by differentiation into memory B cells (Firdaus-Nawi and 

Zamri-Saad 2016). Fish head kidney is a major site of B cell production and maturation into the 
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mature naive B cells. Germinal centers (GC) found in fish head kidney and spleen are an important 

site for activation and subsequent differentiation of B cells into antibody producing plasma cells or 

memory B cells. B cells activation is triggered by their encounter with antigens and can be T cell-

dependent (for protein-derived antigens) or T cell-independent (for polysaccharides- and unmethylated 

CpG DNA-derived antigens) (Nutt et al. 2015). T cell-dependent B cell activation requires activation 

of T helper cells by activated APCs, in this case B cell. Thus, once BCR on antigen presenting B cell 

binds an antigen, the antigen is processed and presented to T helper cells through MHC class II on 

surface of B cells. This leads to activation and differentiation of T helper cells, which then express 

surface protein cluster of differentiation 40 ligand (CD40L). CD40L binds to B cell surface protein 

CD40 which induce activation and differentiation of naive B cells (Janeway et al. 2001b; Kurosaki et 

al. 2015). On the other hand, T cell-independent B cell activation is triggered by direct binding of an 

antigen to BCR and doest not require T cell activation (Janeway et al. 2001b).      

Activated B cells can differentiate either into: (i) the plasmablasts, a short-lived, proliferating, low 

affinity antibody-producing cells which then further differentiate into the plasma cells, a long-lived, 

not-proliferating, high affinity antibody-producing cells (Nutt et al. 2015); or (ii) memory B cells, 

which circulate through the body and are responsible for secondary antibody response. Secondary 

response is triggered upon memory B cell encounter with the same antigen which activated their 

parent B cells, since these two share the same surface BCR (Kurosaki et al. 2015). 

1.1.3.2.2. Antibodies  

Antibodies, or immunoglobulins, are multimeric Y-shape glycoproteins that belong to the 

immunoglobulin superfamily (IgSF), a large family of cell surface and soluble proteins that are 

involved in the recognition, binding, or adhesion processes of cells (Maverakis et al. 2015). A typical 

Ig molecule comprises two heavy (H) and two light (L) chains, each containing one amino-terminal 

variable (V) domain and one (in the L chain) or more (in the H chain) carboxyl-terminal constant (C) 

domains (Secombes and Wang 2012). The arms of the Y contain the sites that can recognize and bind 

antigens, called Fab (fragment, antigen-binding) region. Fab region is composed of one C and one V 

domain from each H and L chain of the antibody. The base of Y plays a role in modulation of immune 
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cell activity. This region is called Fc (fragment, crystallizable) region, and is composed of two H 

chains. Fc region interacts with receptors on the surface of the immune cells (e.g. B cells, 

macrophages, granulocytes, mast cells), called Fc receptors, enabling antibodies to activate these cells 

and induce immune response (Corley 2004). Within the antigen-binding site (or paratope) of Fab there 

is small, extremely variable region called hypervariable region, which enables the existence of 

millions of antibodies with slightly different structures of antigen-binding site. This wide variety of 

antibody paratopes is a result of random recombination of V, D and J gene segments during V(D)J 

recombination (Market and Papavasiliou 2003; Diaz and Casali 2002). Enormous diversity of antibody 

paratopes allows the immune system to recognize an equally wide variety of antigens (Rhoades and 

Pflanzer 2002).   

Antibodies are secreted mostly by plasma cells, and used by immune system for identification and 

neutralization of pathogens. Antibodies are expressed in two physical forms: a membrane-bound and a 

soluble. Membrane-bound antibodies are attached to the surface of B cells and serve as the antigen-

specific component of BCR complex. They have essential role in the activation of B cells during 

immune response and their subsequent differentiation. Membrane-bond antibodies are also important 

for internalization of antigen and for its presentation to T cells. Soluble antibodies are found in blood 

and secretions where they serve for recognition and clearance of foreign antigens (Corley 2004). 

Soluble antibodies circulate the bloodstream and other body fluids, where they recognize and bind to 

the specific antigen that initiated their production. Upon binding, antibodies inactivate pathogens by 

blocking their ability to bind to receptors on host cells. Binding of antibody also marks a certain 

pathogen for destruction and elimination by immune cells with the surface receptors for Ig molecules 

such as phagocytes, e.g. neutrophils, macrophages, mast cells (Schroeder and Cavacini, 2010).  

In mammals, there are five types of antibody isotypes based on five different types of Fc regions: 

• IgM is expressed on the surface of B cells as monomer and in a secreted form as pentamer. It 

is the first response Ig which eliminates pathogens during early stage of B cell-mediated 

immunity, before there is sufficient IgG (Corley 2004, Geisberger et al. 2006). 
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• IgA is the most produced Ig. It predominately exists in the form of dimers with small amount 

of trimers and tetramers. IgA is found in mucosal areas of gut, respiratory and urogenital tract, 

but also saliva, tears and breast milk. It prevents colonization of pathogens and can form 

complexes that bind to multiple antigen molecules (Underdown and Schiff 1986). 

• IgG is monomeric Ig which provides majority of antibody-based immunity against invading 

pathogens. It is the only antibody capable of crossing the placenta to give passive immunity to 

the foetus (Corley 2004). 

• IgD functions mainly as an antigen receptor on B cells in a form of monomer (Geisberger et 

al. 2006), but can also stimulate basophils and mast cells to produce antimicrobial factors 

(Chen et al. 2009). 

• IgE is a monomeric Ig which binds to allergens and triggers histamine release from mast cells 

and basophils. It also has a role in protection against parasitic worms (Corley 2004). 

Teleost fish possess three major types of Ig: IgM, IgD and IgT (named as IgZ in zebrafish) which are 

unique for teleost fish (Parra et al. 2016). All three isotypes have been identified in all teleost fish 

species examined so far, with the exception of IgT which has still not been found in channel catfish, 

Ictalurus punctatus, and medaka, Oryzias latipes (Secombes and Wang 2012; Parra et al. 2016). 

IgM is predominant Ig isotype in teleost blood/serum, while IgD and IgT are found in lesser amounts 

(Secombes and Wang 2012). Teleost IgM is generally present as a tetramer in both serum and mucus 

(Salinas et al. 2011). Similar to mammalian IgM, teleost IgM plays a key role in systemic immune 

responses with effector functions such as complement activation, opsonization, neutralization and 

immune exclusion (Ye et al. 2013). Teleost IgD protein exists in two monomer forms (long and short), 

but its role in pathogen infections is yet to be determined (Parra et al. 2016). The teleost IgT is a 

mucosal-epithelial Ig preferentially expressed in the gut where it can be induced specifically by a 

mucosal pathogen (Zhang et al. 2010). However, its effector functions are still not completely 

clarified, although it is suggested that it is involved in immune exclusion (Parra et al. 2016). Although 

both IgT and IgM can be found in very early developmental stages (4 days post-fertilization) in teleost 
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fish, the expression of IgT increases more rapidly suggesting that IgT may have protection role for fish 

larvae (Zhang et al. 2011, Secombes and Wang 2012).  

 

1.1.3.3. The cellular adaptive immune response in fish 

Cell-mediated immunity involves activation of T lymphocytes which can be categorized according to 

their function into two general populations: cytotoxic T cells (CTLs) and helper T (Th) cells. In 

addition, after the encounter with the antigen, naive T cells can also differentiate into the memory T 

cells responsible for secondary cell-mediated reaction (Firdaus-Nawi and Zamri-Saad 2016). 

CTLs are also known as CD8+ T cells due to their expression of CD8 molecules involved in 

recognition of an antigen via their interaction with MHC class I molecules on surface of all nucleated 

cells (Nakanishi et al. 2015). CTLs can directly kill infected cells by inducing apoptosis, a 

programmed cell death, in two different ways: (i) by releasing cytotoxins into the target cell, where 

they trigger caspase (cysteine-aspartic proteases) cascade leading to apoptosis, or by (ii) expression of 

the surface protein FAS ligand (FasL) which binds to Fas molecules expressed on the target cell 

enabling the formation of the death-induced signaling complex (DISC). DISC again triggers caspase 

cascade ultimately leading to apoptosis of cell expressing surface Fas (Janeway et al. 2001c).  

Th cells are also known as CD4+ T cells due to their expression of CD4 molecules that interact with 

MHC class II molecules on APCs (Nakanishi et al. 2015). Upon activation, naive Th cells may 

differentiate into at least five major subtypes: Th1, Th2, Th17, inducible T-regulatory (iTreg) and 

follicular B helper T (Tfh) cells, that play a critical role in orchestrating immune responses through 

production of different cytokines (Laing and Hansen 2011). Teleost Th1 cells are involved in immune 

responses to intracellular viral and bacterial infections by producing IFN-γ. Th2 cells produce IL-4/13, 

and IL-6 which contribute to their role in expelling extracellular parasites (e.g. helminths). Th17 cells 

control extracellular bacteria and fungi by producing IL-17, IL-21 and IL-22. Tfh induces activation 

and differentiation of B cells by expressing CD40L, IL4/13 and IL 21. Inducible T-regulatory (iTreg) 

cells produce TGFβ1 and are important for maintenance of lymphocyte homeostasis and immune 

tolerance (Laing and Hansen 2011; Secombes and Wang 2012). Th signature cytokines are also 
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important for activation of Th cells, thus represent their positive feedback (Secombes and Wang 

2012). 

 

1.1.4. Overall mechanisms of fish immune response 

The immune system can be described as a set of cellular and humoral components which defend the 

body against foreign harmful substances or infectious microorganisms. In order to distinguish 

'infectious non-self' from the ‘non-infectious self', innate immunity system employs its recognition 

receptors PRRs which recognize exogenous PAMPs or endogenous DAMPs. The first obstacle in 

invading pathogen needs to pass is a physical barrier in the form of fish scales and mucous surfaces of 

skin, gills and gastrointestinal tract. If the pathogen successfully breaks through, it is recognized by 

PRRs which then trigger various cellular and humoral components of innate and subsequently 

adaptive immunity system. The innate immunity involves cellular components such as macrophages, 

granulocytes (e.g. neutrophils) and non-specific cytotoxic cells which have been employed by 

inflammatory cytokines to kill and digest the invading pathogens through a phagocytosis. 

Simultaneously, the innate humoral components (e.g. lysozyme, C-reactive protein, antibacterial 

peptides, complement) alone or in collaboration with cellular components destroy invading microbes 

or inhibit their growth (Aoki et al. 2008). These processes, especially phagocytosis by local 

macrophages, may result in complete elimination of pathogen. However, if an infection progresses 

despite the inflammation, cytotoxic cell and phagocyte activity of the innate immune system, a more 

specific and coordinated response is required to destroy the pathogen. Thus, the adaptive immunity 

system is triggered. When a pathogen evades the innate immune system for long enough, it generates a 

threshold level of a pathogen-derived antigen. Professional APCs, i.e. macrophages, dendritic cells or 

B cells, recognize and engulf the antigen. After the degradation process, selected small linear peptides 

fragments from the pathogen are sent to the surface of APCs and bound to surface (MHC) class II 

molecules. CD4+ T cells or Th cells recognize presented antigen and bind to MHC class II via T cell 

receptor, TCR. Formation of APC-Th cell complex triggers activation and differentiation of Th cells. 

Th cells differentiate into Th1, Th2, Th17, iTreg or Tfh cells, depending on type of infection, which 

then secrete different cytokines to facilitate different types of immune responses. Tfh cells thus induce 
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activation and differentiation of B cells by expressing surface protein CD40L and cytokines IL4/13 

and IL 21. Activated B cells differentiate into either plasma cells that produce specific antibody or 

memory B cells that create immunological memory of specific antigen (Figure 1.3). The released 

soluble antibodies bind specifically to the pathogen blocking its binding to the host cells. Disabled 

pathogen is recognized and eliminated by phagocytic cells such as macrophages, neutrophils or mast 

cells via phagocytosis. 

Intracellular pathogens such as viruses undergo another effective mechanism of elimination. They are 

recognized, phagocytized and processed by non-professional APCs, which can basically be any 

nucleated cell, and displayed on MHC class I molecules on their surface. CD8 + T cells or CTLs 

recognize and bind to MHC class I which triggers its activation. Activated CTLs can directly kill 

infected cells by inducing cell apoptosis (Figure 1.4).  

Upon the repeated exposure to the same antigen, circulating memory B cells located in the mucosal 

layer of the exposed fish stimulate production and release of specific antibodies against the pathogen 

and/or cytotoxic cells to prevent adhesion and subsequent invasion of the pathogen. If the pathogen 

passes mucosal barrier and invade the host body, it again triggers components of innate immune 

system but also induces a secondary immune reaction of adaptive immune system. Secondary reaction 

is faster and stronger then the primary due to the activated memory B and memory T cells which 

enhance production and release of specific antibodies and enhance the activity of CTLs, respectively.  
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Figure 1.3. T-dependent activation of B cells. Antigen derived from exogenous pathogen (i.e. bacterium) is 

processed by antigen presenting macrophage (professional APC) and displayed on surface MHC class II 

proteins. CD4+ T helper cell recognizes and binds to MHC class II which triggers T helper cell activation and 

secretion of appropriate cytokines. Naive B cell recognize and binds to activated T helper cells which then 

triggers activation and differentiation of B cells into antigen producing plasma cells and memory B cells. Reused 

from Firdaus-Nawi and Zamri-Saad (2016). 

 

 

 

 

 

 

 

Figure 1.4.  Elimination of endogenous antigen (Ag) by cytotoxic T cell (CTL). Ag is processed by antigen 

presenting dendritic cell (professional APC) and displayed on surface MHC class I (MHC-1) proteins. CD8+ T 

cell recognizes and binds to MHC-1 which triggers T cell activation and differentiation into CTLs and memory 

T cell. CTL recognizes and binds to infected host cell expressing MHC-1 on its surface (non-professional APC). 

CTL releases pore forming cytolytic protein which forms pores on the target cell allowing cytotoxins also 

released by CTL to enter and destroy infected cell by inducing apoptosis. Reused from Firdaus-Nawi and Zamri-

Saad (2016). 
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1.1.5. Fish cytokines – mediators of immune response 

Every aspect of immune response requires precise regulation to ensure that it occurs only under 

appropriate conditions, lasts for appropriate period of time and has appropriate magnitude. That kind 

of regulation is, in most cases, regulated by cytokines, simple polypeptides or glycoproteins of less 

than 30 kDa, (Thomson 1994; Callard and Gearing 1994). These molecules regulate communication 

between different cells of immune system and have a number of different functions in both humoral 

and cell-mediated immune response (Tzianabos and Wetzler 2004). Cytokines are able to modulate 

both innate and adaptive immune response. For example, upon their production at the site of infection, 

cytokines regulate the capacity of local and newly arrived phagocytes to eliminate invading pathogens 

by modulation of inflammation signals. Furthermore, cytokines also regulate antigen presenting cells 

(APCs) and their migration to lymph nodes to initiate the adaptive immune response leading to 

generation of cytotoxic T cells and the production of antibodies (Wang et al. 2011; Wang and 

Secombes 2013). Cytokines can be produced by a variety of cells, both immune (e.g. monokines, 

macrophages, B lymphocytes, T lymphocytes, mast cells) and nonimmune (e.g. endothelial cells, 

fibroblasts, stromal cells). However, the two principal producers of cytokines are the Th cell and the 

macrophages. Initially, cytokines produced mainly by leukocytes were designated as lymphokines or 

as monokines if they were produced mainly by monocytes and macrophages. However, later studies 

have shown that the majority of cytokines can be produced by more then one type of cells, thus these 

terms have fallen out of usage as a part of official classification of cytokines. Cytokines generally 

function as intercellular messenger molecules that evoke particular biological activities after binding 

to a receptor on a responsive target cell. The cell that is affected by the cytokine carries cell surface 

receptor that binds specifically to that one cytokine. The main biological activities of a number of 

immune-related cytokines include (Tzianabos and Wetzler 2004): 

• modulation of both cellular and humoral immune responses 

• induction of inflammatory responses 

• regulation of hematopoiesis 

• control of cellular proliferation and differentiation 
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• induction of wound healing 

All cytokines possess several common properties (Hamblin 1993; Vilcek and Le 1994; Tzianabos and 

Wetzler 2004): 

1. Their constitutive production is usually low as they are not stored in their active state but are 

synthesized and released as a result of new gene transcription following cell stimulation. Since 

transcription is typically transient and mRNA short-lived, cytokine secretion is a brief self-

limiting event. 

2. The cellular response of cells to cytokines usually occurs in matter of hours requiring 

production of mRNA and proteins de novo. 

3. Cytokines can induce or inhibit the production of other cytokines creating regulatory networks 

that modulate cytokines’ biologic effect. 

4. Cytokines may act on the cell from which they were secreted having autocrine activity or on 

proximal cell type having paracrine activity. In general, cytokines perform in the vicinity in 

which they are secreted, but in few cases (such as IL-1 and TNFα) they can also act in an 

endocrine manner, and be carried via the blood stream to target cells. 

5. Cytokines can regulate cellular activity in several different interactive ways: 

• Pleiotrophy - cytokines can induce different responses in different targets, despite the 

fact that they act on target cells via high affinity specific receptors. 

• Redundancy - different cytokines can have comparable effects on same target cells. 

• Synergism - occurs when two signals are necessary for stimulation of target cells or 

when contact with the first signal (cytokine) is crucial for induction of receptor 

expression for the second signal. Cytokines often act in synergy with other cytokines 

but also with pathogen-derived molecules. Because of that characteristic it is unlikely 

that in vivo a cell will ever encounter a single cytokine.  
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• Antagonism - one cytokine can inhibit the action of another cytokine (less well 

documented). 

Considering their ability to stimulate or inhibit immune response, cytokines can also be divided to:  

1. Pro-inflammatory cytokines, such as TNFα, IFNγ and IL-1β, up-regulate inflammatory 

processes by enhancing antimicrobial functions of immune cells and in that way facilitate the 

pathogen clearance. Although they are primarily responsible for initiation of effective defense 

against pathogens, their overproduction can be harmful and may ultimately lead to shock, 

multiple organ failure, and death (Pinsky et al. 1993; Marty et al. 1994). 

2. Anti-inflammatory cytokines, such as TGFβ and IL-10, down-regulate inflammatory 

processes and direct cell functions towards tissue repair mechanisms. These cytokines are 

crucial for silencing aggravated inflammatory process and maintenance of homoeostasis for 

proper organ function (Gerard et al. 1993; Howard et al. 1993). On the other hand, excessive 

anti-inflammatory response may also result in the suppression of body immune function 

(Bone 1996; Fisher et al. 1996). 

The production of pro-inflammatory and anti-inflammatory cytokines is therefore strictly controlled 

by complex feedback mechanisms (Zimmer et al. 1996; Kasai et al. 1997; van Dissel et al. 1998). 

1.1.5.1. Classification of cytokines  

Fish possess a repertoire of cytokines similar to those of mammals, many of which have been cloned 

in different teleost species (Whyte 2007; Secombes et al. 2011). Current knowledge of fish cytokines 

is based on experimentally obtained and described models and signalling networks of their 

mammalian homologues.  

According to conventional classification cytokines have been divided into several families including 

(Secombes et al. 1996):   

• Interferons (IFN), a family of cytokines originally identified for their ability to "interfere" 

with viral replication. IFNs can also activate inflammatory cells and are of central importance 

https://en.wikipedia.org/wiki/Viral_replication
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in host defense against intracellular and extracellular pathogens (Tzianabos and Wetzler 

2004). 

• Chemokines or chemoattractant cytokines, a family of small (8-10 kDa) structurally related 

proteins that regulate immune cell migration under both inflammatory conditions and 

homeostasis. Immune cells that are attracted by chemokines include monocytes/macrophages, 

granulocytes and T lymphocytes (Bird and Tafalla 2015). Once they are released by infected 

or damaged cells, chemokines attract immune cells by forming a concentration gradient which 

allows cells to move towards the higher local concentration of chemikines, i.e. source of 

infection (Callewaere et al. 2007). Chemokines are also known as “second-order” cytokines, 

being induced by “first-order” cytokines with pro-inflammatory roles, such as interleukins, 

tumor necrosis factors or interferons (Peatman and Liu 2007). 

• Colony stimulating factors (CSF), a family of secreted glycoproteins that drive the 

proliferation and differentiation of blood cells from hematopoietic stem cells (Zou and 

Secombes 2016). They also participate in replenishing leukocytes populations during immune 

reactions (Tzianabos and Wetzler 2004). 

• Interleukins (IL), a large group of pluripotent cytokines produced by a variety of lymphoid 

and non-lymphoid cells which are involved, at least partly, in all immune reactions. Although 

the term ‘interleukin’ originally describes a specific function (interaction between leukocytes), 

cytokines which are now designated as interleukins are in fact multifunctional. Interleukins 

represent one of the critical early inducted cytokines that orchestrate expression of other 

cytokines during infection or inflammation. They can also induce migration of leukocytes and 

enhance proliferation of macrophages and phagocitosys (Huising et al. 2004).  

• Tumor necrosis factors (TNF), a family of structurally related proteins, either soluble or 

membrane-bound, that are produced during lymphoid organ development and inflammation. 

TNFs are involved mainly in cellular regulation such as cell killing/survival during immune 

responses and inflammatory reactions (Gruss 1996). 
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However, with increasing knowledge about molecular structure of cytokines this classification had to 

be revised. Classification of cytokines is now based on their molecular structure which further dictates 

their receptors, the down-stream signalling pathways that are activated and their function (Zou and 

Secombes 2016): 

1. β-Trefoil cytokines  

The β-Trefoil cytokine family, also referred to as Interleukin-1 (IL-1) family, is named by protein 

fold (i.e. secondary structure) in which the protein backbone is twisted into a trefoil knot shape. It 

consists of 11 members that can functionally be classified into (Zou and Secombes 2016): 

• pro-inflammatory group (IL-1α, IL-1β, IL-18, IL-33 and IL-36α, IL-36β and IL-36γ) 

• anti-inflammatory group (IL-1Ra - receptor antagonist for IL-1α and IL-1β; IL-36Ra - 

receptor antagonist for IL-36α, β and γ; IL-37 and IL-38) 

Fish Novel IL-1 Family Members (nIL-1Fm) identified in fish and characterized as teleost specific 

are:  

• IL-1β3 gene and IL-1β4 pseudogene in salmonids (Husain et al. 2012) 

• gcIL-1R1 - IL-1β receptor antagonist in grass carp (Yao et al. 2015) 

 

2. β-Jellyroll cytokine  

β-Jellyroll cytokine family, also termed Tumor necrosis factor (TNF) superfamily, is named by 

protein fold composed of eight beta strands arranged in two four-stranded sheets. It consists of 19 

members in human, mainly membrane bond proteins. There are three major members of this family in 

fish with a critical role in regulation of inflammatory response, cell survival/apoptosis, proliferation 

and differentiation (Zou and Secombes 2016):  

• TNF-α 

• lymphotoxin (LT) α (also called TNF-β) 

• LT-β 
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3. Cysteine Knot Cytokines 

Cysteine knot cytokines are named by protein fold which is composed of three disulphide bridges 

formed from pairs of cysteine residues. They consist of two major families: 

• IL-17 family cytokines  

Members of this family mainly have pro-inflammatory functions. There are six members 

identified in mammals: IL-17A to IL-17F. In fish only two clear homologues are identified: IL-

17B and IL-17D but with multiple isoforms termed IL-17A/F (Wang et al. 2015). 

• Transforming growth factor-β (TGF-β) family cytokines  

Members of TGF-β family regulate cell development, proliferation, differentiation, migration, 

and survival of lymphocytes, DC, NK cells, macrophages and granulocytes. Three isoforms 

are identified in mammals: TGF-β1 to TGF-β3. Fish possess specific TGF-β isoform (TGF-

β6) whose role is still undetermined (Funkenstein et al. 2010). 

4. Type I α Helical Cytokines: 

Helical cytokines are characterized by four-helix bundle fold in which four helices are coiled together 

like strands of a rope with hydrophobic core in the center. This large family can be divided into 

several subfamilies: 

• IL-2 Subfamily  

This subfamily includes IL-2, IL-4/13, IL-7, IL-15 and IL-21 whose central action is mainly 

directed to lymphocytes, their survival, proliferation and differentiation. Interestingly, fish IL-

4/13 share similarities with both IL4 and IL13 in mammals. Also, they are present in two 

copies, IL4/13A and IL4/13B as a result of WGW event in fish (Wang and Secombes 2015). 

• Beta Chain Cytokines  

In mammals, this subfamily includes IL-3, IL-5 and granulocyte-macrophage CSF (GM-CSF). 

Fish possess recently discovered IL-3/IL-5/GM-CSF related genes (Yamaguchi et al. 2015), 

whose nature and functions are yet to be discovered. 

• IL-6 Subfamily 
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Cytokines belonging to IL-6 subfamily play a pivotal role in hematopoiesis and act as both 

pro- and anti-inflammatory. In fish, this subfamily includes IL-6, IL-11 and molecules termed 

CNTF-like and M17 (Zou and Secombes 2016). 

• IL-12 Subfamily  

 IL-12 subfamily of cytokines includes IL-12 IL-23, IL-27 and IL-35, with only IL-12 

functionally studied in fish. IL-12 mediates stimulation of interferon γ (IFNγ) secretion from 

resting lymphocytes and NK cells. Some fish species appear to possess two functional IL-12 

isoforms, due to the existence of IL-12 subunit paralogues. It is also suggested that two 

isoforms signal via different receptors and are differentially expressed during bacterial, viral 

and parasitic infection (Wang et al. 2014). 

• Colony Stimulating Factors (CSF)  

CSF subfamily can be divided in respect to their target cell into: CSF-1 or macrophage colony 

stimulating factor (M-CSF), CSF-2 or granulocyte-macrophage CSF (GM-CSF) and CSF-3 or 

granulocyte-CSF (G-CSF). There are two major isoforms of M-CSF in fish, M-CSF1 and M-

CSF2, which are probably the result of teleost WGD event (Wang et al. 2008). 

5. Type II α Helical Cytokines 

Type II α Helical Cytokines comprise three major families: 

• IL-10 subfamily  

This subfamily in fish includes IL-10, IL-22, IL-26 and IL-20 like (IL-20L) which is 

homologue to the mammalian IL-19/IL-20/IL-24. Only IL-10 and IL-22 are functionally 

characterized in fish. IL-10 inhibits inflammation, promote T cell proliferation, memory B 

cells, and IgM production (Piazzon et al. 2015a; Piazzon et al. 2015b), while IL-22 activates 

antimicrobial peptides and antibacterial immunity (Qi et al. 2015). 

• Type I IFN  

This family can be divided into two groups: group I IFNs (IFN a, d, e) and group II IFNs (IFN 

b, c, f), which both induce expression of the antiviral effectors, promote apoptosis and regulate 

inflammation (Zou and Secombes 2016). 
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• Type II IFNs  

In teleosts two members of this family have been identified and are termed IFN-γ and IFN-γ 

related or IFN-γrel. IFNγ can activate phagocytes and enhance antigen presentation, while 

IFN-γrel is involved in the regulation of anti-bacterial and antiviral immunity (Zou and 

Secombes 2016). 

6. Open face β sandwich 

Secondary structure of open face β sandwich family, also referred to as chemokines, is characterized 

by two opposing antiparallel β-sheets. Chemokines are defined by the presence of four conserved 

cysteine residues and are divided into four distinct subfamilies based on the arrangement of the first 

two cysteine residues within their peptide structure. In mammals, chemokine subfamilies are: CXC 

(α), CC (β), C and CX3C classes. In fish, no CX3C class chemokines have ever been reported (Bird 

and Tafalla 2015), whilst C class chemokines have been reported only in zebrafish, Danio rerio. 

However, a new fish-specific chemokine subfamily has been identified in zebrafish and designated as 

CX class (Nomiyama et al. 2008). 

In response to pathogens, chemokines mount initial steps of both innate and adaptive immune 

response by promoting immune cells migration to the site of infection, but also by regulating their 

subsequent differentiation (Bird and Tafalla 2015).  

1.1.5.2. Cytokine receptors 

Cytokines activity is mediated through binding to high-affinity cell surface receptors on target cells. 

All cytokine receptors contain three functional domains necessary for their biological activity: 

• recognition domain - protruding from the cell surface, involved in specific binding of the 

cytokine 

• hydrophobic transmembrane domain - attaches the receptor to the cell 

• intracellular signaling domain - binds enzymes called kinases or couples with G-protein, 

which are both involved in signal transduction by activation of downstream proteins  
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Cytokine receptors are expressed on different cell types allowing cytokines to affect a diverse array of 

cells. On the other hand, these receptors also share structural homologies and can bind different 

cytokines, though with different affinity, enabling cytokines their redundancy (Tzianabos and Wetzler 

2004).  

Cytokine receptors can be classified into several receptor families (Tzianabos and Wetzler 2004; 

Wang et al. 2009): 

• Type I cytokine receptors, which share conserved extracellular domain with approximately 

200 amino acids. They bind cytokines such as IL2, IL3, IL4, IL5, IL6, IL7, IL9, IL11, IL12, 

GM-CSF and G-CSF. 

• Type II cytokine receptors, which share structural similarities in their ligand-binding domain 

and are receptors mainly for interferons, but also bind IL10 and IL22.  

• Chemokine receptors, which contain 7 transmembrane domains and couple to G-protein for 

signal transduction.  

• Tumor necrosis factor receptor (TNFR) family shares a cysteine-rich common extracellular 

binding domain. 

• TGF-beta receptors, which have cytoplasmic serine/threonine rich domain, thus represent 

serine/threonine kinase receptors.  

• Immunoglobulin (Ig) superfamily receptors shares structural homology with 

immunoglobulins and bind cytokines such as IL1α and β, IL-18, IL-33, CSF-1R. 

Cytokine-mediated signal transduction is associated with several signaling pathways, depending on 

the type of cytokine receptor, ultimately leading to transcription of cytokine responsive genes. All 

cytokine receptors, especially Type I and II cytokine receptors are associated with so-called 

JAK/STAT signaling pathway. Janus kinase (JAK) is a family of tyrosine kinase which 

phosphorylates tyrosine residues of certain proteins. The binding of cytokine to its receptor activates 

associated JAK which then phosphorylates itself and the receptor, creating a binding site for 

associated signal transducers and activators of transcription (STAT). JAK again phosphorylates and 
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activates STAT, which then translocates to nucleus and induces transcription of cytokine responsive 

genes (Tzianabos and Wetzler 2004; Haan et al. 2006; Murray 2007). 

Chemokine receptors associate with G-proteins to transmit cell signals following ligand binding. G 

proteins are characterized by their ability to hydrolyze guanosine triphosphate (GTP) to guanosine 

diphosphate (GDP) and thus activate (when bond to GTP) and deactivate (when bond to GDP) 

themselves. Activated G protein activates different signaling cascades including the activation of so 

called ‘second messengers’, intracellular signaling molecules which can couple with downstream 

kinase cascades, such as mitogen activated protein kinase (MAPK) cascade, amplifying the strength of 

the initial chemokine-derived first signal (Patel et al. 2013).   

Immunoglobulin superfamily and TNF receptors can transduce signal via specific interleukin-1 

receptor activated protein kinase (IRAK) 4 (Weber et al. 2010) and death inducing signaling complex 

(DISC) (Rahman and McFadden 2006), respectively, both leading to activation of transcription factor 

- nuclear factor kappa-light-chain-enhancer of the activated B cells (NF-κB), which ultimately induces 

transcription of certain cytokine responsive genes. Later signal transduction pathways are discussed in 

detailed in Sections 1.1.6.1. and 1.1.7.1. 

1.1.6. Tumor necrosis factor alpha (TNFα) in teleost fish  

Tumor necrosis factor alpha (TNFα) belongs to a large family of structurally related cytokines called 

Tumor necrosis factor superfamily TNFSF, an ancient family of structurally related cytokines whose 

orthologs can be traced back to protostomian invertebrates (Secombes et al. 2016). In mammals, 

TNFα exists in two biologically active forms: a 26 kDa membrane-bound protein and a 17 kDa 

secreted form, generated by proteolytic cleavage of the 26 kDa protein at its C terminus with TNFα 

converting enzyme (TACE) (Gearing et al. 1994; McGeehan et al. 1994; Moss et al. 1997). The 

cleaved mature peptide forms a trimer and binds to its receptor eliciting a response. The 17 kDa TNFα 

has a structure typical of TNF family members, composed of eight anti-parallel β-strands, forming a 

“jely-roll” β-structure (Figure 1.5) (Ware et al. 1998). A predicted TACE cut site is present in all fish 
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TNFα sequences, suggesting a conserved mechanism for TNFα processing and release in all 

vertebrates (Secombes et al. 2016). 

 

 

 

 

 

Figure 1.5. Crystal structure of TNFα as published in the Protein Data Bank (PDB: 1TNF). 

 

1.1.6.1. Functional characteristics of TNFα 

TNFα is a central inflammatory mediator initially identified as a serum component capable of eliciting 

“hemorrhagic necrosis” of certain tumors (Carswell et al. 1975). Fish TNFα has been found to be a 

pluripotent immune gene expressed at early stage of infection with a key role in orchestration of 

cytokine production and inflammation, as well as in regulation of lymphoid organ development and 

migration and proliferation of leukocytes (Zou and Secombes 2016). Studies have also shown that the 

main target of fish TNFα are endothelial cells, suggesting that TNFα is mainly involved in the 

recruitment of leukocytes to the inflammatory foci rather than in their activation (Roca et al. 2008). 

Furthermore, TNFα can induce its own production and that of other cytokines such as IL-1, IL-6 and 

IL-8 (Hong et al. 2013). TNFα is produced by macrophages in response to immunological challenges 

such as bacteria (lipopolysaccharides), viruses, parasites, mitogens, and other cytokines (Frederick et 

al. 2004). Following its production, TNFα mediates cellular response by binding to one of two 

receptors on cell membrane: TNFα receptor 1 (TNFR1) or TNFα receptor 2 (TNFR2). It can induce 

either NF-κB-mediated survival or caspases-mediated apoptosis, depending on the cellular context 

(Rahman and McFadden 2006). The apoptotic pathway is activated upon TNFα binding to death 
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domain (DD) on TNFR1, which can activate caspase cascades via DD containing signaling 

intermediates, ultimately leading to apoptosis. Namely, activated TNFR1 induces the formation of 

death inducing signaling complex (DISC), a protein complex formed by members of so-called death 

receptors such as RIP (receptor interacting protein), TRAD (TNFR1- associated death domain) and 

FADD (Fas-associated death domain). DISC activates caspase 8 or 10 which then induce activation of 

pro-apoptotic proteins of Bcl-family leading to cell death (Micheau and Tschopp 2003; Muppidi et al. 

2004; Rahman and McFadden 2006). On the other hand, the NF-κB mediated survival pathway is 

activated following TNFα interaction with either TNFR1 or TNFR2. Activated receptors attract and 

bind TNF receptor-associated factor (TRAF). This complex activates signaling proteins such as NF-

κB inhibitor kinase (NIK) and mitogen activated protein kinase kinase (MAPKK) 1 (MEKK1), which 

then activates the inhibitor of NF-κB (IκB) kinase (IKK). Activated IKK phosphorylates IκB, leading 

to its dissociation from NF-κB and subsequent degradation by proteasome. Free NF-κB is translocated 

into the nucleus where it, as the transcriptional factor, induces the expression of anti-apoptotic and 

inflammatory genes, resulting in cell survival and initiation of immune response (Wang et al. 1998; 

Rahman and McFadden 2006). Through adaptation processes during evolution, many viruses have 

developed different strategies to neutralize TNFα by direct binding and inhibition of the ligand or its 

receptor, or by modulation of various downstream signalling events, e.g. downregulating the cellular 

death receptors, interacting with TRAF, blocking caspase activation, blocking or activating NF-κB 

(Benedict and Banks 2003; Rahman and McFadden 2006).  

In addition to its roles in acute infection, TNFα can be associated with oocyte maturation (Crespo et 

al. 2010) and liver development in fish (Qi et al. 2010), as well as with pathogenesis of several 

chronic fish diseases (Xu et al. 2012; Ronza et al. 2015). TNFα also represents one of the major 

cytokines secreted by adipose tissue, i.e. adipokin in fish (Liu et al. 2015). It has been designated as 

limiting factor of lipid deposition, inhibitor of preadipocytes differentiation and stimulator of mature 

adipocyte lipolysis, and it is suggested to be an important regulatior of lipid metabolism in fish 

(Albalat et al. 2005; Wang et al. 2012; Liu et al. 2015).  
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1.1.6.2. Identification of TNFα in fish 

First fish TNFα was identified and characterized by Hirono et al. (2000) in Japanese flounder 

Paralychthys olivaceus. It had only 20-30% amino acid identity with mammalian TNFs, but had very 

similar intron/exon organization. The expression of flounder TNFα gene was elicited in peripheral 

blood leukocytes (PBL) by stimulation with different pathogen-associated molecular patterns (PAMP) 

suggesting that fish share conserved role of this cytokine in inflammatory responses with higher 

vertebrates. TNFα is currently one of the most well-studied fish cytokines, being described in several 

teleost fish, including: brook trout, Salvelinus fontinalis (Bobe and Goetz 2001), rainbow trout, 

Oncorhynchus mykiss (Laing et al. 2001), gilt-head sea bream, Sparus aurata (Garcia-Castillo et al. 

2002), red sea bream, Pagrus major (Cai et al. 2003), common carp, Cyprinus carpio (Saeij et al. 

2003), channel catfish, Ictalurus punctatus (Zou et al. 2003b), zebrafish, Danio rerio (Savan et al. 

2005), Nile tilapia, Oreochromis niloticus (Praveen et al. 2006), turbot, Psetta maxima (Ordas et al. 

2007), goldfish, Carassius auratus (Grayfer et al. 2008), ayu fish, Plecoglossus altivelis (Uenobe et 

al. 2007), sea bass, Dicentrarchus labrax (Nascimento et al. 2007), Atlantic salmon, Salmo salar  

(Morrison et al. 2007), Pacific bluefin tuna, Thunnus orientalis (Kadowaki et al. 2009), orange-

spotted grouper, Epinephelus coioides (Lam et al. 2011), southern bluefin tuna, Thunnus maccoyii 

(Polinski et al. 2013). Notably, all fish TNFα proteins possess the TNF family signature, [LV]- x-

[LIVM]-x3-G-[LIVMF]-Y-[LIMVMFY]2-x2-[QEKHL] (Laing et al. 2001), which underlines the 

evolutionary conservation of this cytokine. Also, the gene organization of 4 exons and 3 introns is 

found in all known vertebrate TNFα molecules determined so far. 

1.1.6.3. Isoforms of TNFα in fish 

The first functional characterization of a fish TNFα was reported by Zou et al. (2003), who suggested 

that pro-inflammatory roles of TNFα are conserved among all teleosts. This and many later studies 

also revealed the existence of some obvious differences between teleost TNFα and their mammalian 

counterparts, such as the presence of multiple TNFα isoforms in some species. Thus, Pacific bluefin 

tuna (Kadowaki et al. 2009), salmon (Haugland et al. 2007) and orange-spotted grouper (Lam et al. 

2011) express two TNFα genes (TNFα1 and TNFα2), whereas common carp (Savan and Sakai 2004) 
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and rainbow trout (Hong et al. 2013) possess a third TNFα (TNFα3). On the other hand, Japanese 

flounder (Hirono et al. 2000) possesses only one TNFα copy. Furthermore, TNFα1 has shown rather 

strong constitutive expression in different tissues of healthy fish but relatively poor up-regulation 

following immune challenge in vitro and in vivo (Reyes-Cerpa et al. 2012), in contrast to TNFα2 with 

low constitutive expression but fast and strong post-stimulation induction (Zou et al. 2002; Kadowaki 

et al. 2009). TNFα3, on the other hand, exhibited generally lower constitutive expression than the 

other two genes, but was most responsive to early post-stimulation time point (Hong et al. 2013). The 

differential expression and modulation of the TNFα paralogues could be the results of 

subfunctionalization or even neo-functionalization, enabling fine regulation of TNFα-mediated 

cellular responses (He and Zhang 2005; Hong et al. 2013). 

1.1.7. Interleukin-1 beta (IL-1β) in teleost fish 

The interleukin-1 (IL-1) family of cytokines, is another major mediator of inflammation which can 

induce the expression of numerous non-structural, function-associated genes during infection (Bird et 

al. 2002a). Its members tend to be either pro-inflammatory, or act as antagonists to inhibit the 

activities of other family members (Palomo et al. 2015). IL-1β is the best characterized and most 

studied cytokine amongst the 11 mammalian IL-1 family members. In mammals, IL-1β is expressed as 

a 30 kDa inactive precursor, pro-IL-1β, that lacks a signal peptide and does not follow the 

conventional endoplasmic-reticulum (ER)/Golgi route of secretion. IL-1β is fully activated and able to 

elicit immune functions only after it is proteolytically cleaved into a 17.3 kDa mature peptide (Figure 

1.6) by caspase 1. This is a cysteine protease also called IL-1β converting enzyme (ICE), although 

several other proteases can also cleave IL-1β but at different cleavage site (Bird et al. 2002a; Ogryzko 

et al. 2014). Caspase 1 cuts pro-IL-1β at a conserved aspartic acid residue (D) typically located 

between residues 113 and 117 releasing mature peptide (Zou et al. 1999b). However, in order to 

process IL-1β, caspase 1 itself must first be activated. Activation of caspase 1 takes place in the 

inflammasome, a multiprotein complex expressed in myeloid cells (i.e. monocytes, macrophages, 

granulocytes, mast cells, DCs) in response to danger or pathogen-associated signals (Vojtech et al. 

2012). The inflammasome generally includes one or more pathogen recognition receptors PRRs, the 
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adaptor protein ASC, and caspase 1 (Broz and Monach 2011). Therefore, the release of mature IL-1β 

is a two-step process which requires two separate inflammatory signals. The first step is the 

transcriptional upregulation (e.g. via transcriptional factor NF-κB) and production of both pro-IL-1β 

and pro-caspase 1, as a result of cytokine signaling or myeloid cells encounter with pathogen-

associated molecular pattern PAMPs. The second step is the assembly and activation of the 

inflammasome whose function is to produce biologically active mature IL-1β via activation of caspase 

1. This step requires secondary inflammatory signal, usually in the form of DAMPs or cytokine 

signals in the cytosol (van de Veerdonk et al. 2011; Ogryzko et al. 2014). Caspase 1 is also associated 

with the transport of mature peptide out of the cell (Carretti et al. 1992; Thornberry et al. 1992; Tocci 

1997). 

 

 

 

 

 

Figure 1.6. Crystal structure of IL-1β. Adapted from the Protein Data Bank (PDB: 31BI). 

 

Fish IL-1β orthologs lack an identifiable D residue, i.e. caspase 1 cut site. However, processing of 

teleost pro-IL-1β into an active form involves inflammatory caspases (Zou and Secombes 2016). 

Teleost fish inflammatory caspases have been primarily sequenced in zebrafish, as a generally 

accepted model organism for studying host-pathogen interactions and immunity (Vojtech et al. 2012). 

Zebrafish orthologues of human inflammatory caspases 1 and 5, named caspase A and caspase B, are 

both able to cleave pro-IL-1β, although human caspase 5 does not cleave pro-IL-1β itself, but 

potentiates IL-1β processing mediated by caspase 1 (Vojtech et al. 2012; Martinon et al. 2002). 
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Interestingly, zebrafish caspase A and B require two cut sites for successful processing of IL-1β: D122 

plus D104 for caspase A, and D122 plus D104 or D88 for caspase B (Vojtech et al. 2012). Therefore, 

zebrafish IL-1β is cleaved at two different sites into two mature peptides of 22- and 18-kDa. 

1.1.7.1. Functional characteristics of IL-1β 

IL-1β is one of the earliest expressed pro-inflammatory cytokines with overlapping functions with 

TNFα, enabling organism to respond promptly to infection (Zou and Secombes 2016). IL-1β is 

produced by a variety of cells, but mainly blood monocytes and tissue macrophages. It affects almost 

every cell type playing a central role in the initiation of systemic and local responses to infection or 

injury by activating macrophages, T and B lymphocytes and NK cells (Netea et al. 2010; Dinarello 

2011). IL-1β exerts its activity by binding to IL-1 type I receptor (IL-1R1), which then recruits and 

binds IL-1 receptor accessory protein (IL-1RAP), which serves as a co-receptor for signal transduction 

of IL-1/IL-1RI complexes. Activated trimeric complex assembles two signaling proteins: myeloid 

differentiation primary response gene 88 (MYD88) and interleukin-1 receptor activated protein kinase 

(IRAK) 4. This triggers autophosphorylation of IRAK4, which then phosphorylates and activates 

IRAK1 and IRAK2. IRAK1 and IRAK2 form a complex with TNF receptor-associated factor 6 

(TRAF6) causing its oligomerization and activation, and subsequent stimulation of signaling pathways 

leading to activation of transcription factors NF-kB and activator protein 1 (AP-1) (Cao et al. 1996a; 

Weber et al. 2010). Namely, TRAF 6 is ubiquitin ligase involved in ubiquitination of other proteins 

and itself. Ubiquitinated TRAF6 forms complex with transforming growth factor-β (TGF-β)-activated 

protein kinase-binding protein 2 and 3 (TAB2 and TAB3) and TGF-β–activated protein kinase 

(TAK1). Ubiquitination of TAK1 promotes its association with mitogen activated protein kinase 

(MAPKK) 3 (MEKK3). TAK1 and MEKK3 represent the main linkage between IL-1R-triggered 

immune response and final gene activation (Cao et al. 1996b; Weber et al. 2010). TAK1 can activate 

inhibitor of NF-κB (IκB) kinase (IKK), which then phosphorylates IκB leading to its degradation. 

Once NF-κB is dissociated from IκB, it can translocate into the nucleus and induce transcription of 

numerous IL-1β responsive genes (Weber et al. 2010). TAK1 and MEKK3 can also activate MAPKKs 

such as MKK4, MKK7, MKK3 and MKK6, ultimately leading to activation of AP-1. Both pathways 
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result in the induction of numerous IL-1β responsive genes including chemokines (IL-8), pro-

inflammatory cytokines (TNFα, IL-6, IL-34), anti-inflammatory cytokines (IL-10 and TGF- β), 

cyclooxygenase 2 (COX2), acute-phase proteins (e.g. C-reactive protein, transferrin, complement 

factors) and cell adhesion molecules (Burns et al. 2003; Reis et al. 2012). IL-1β can also bind to IL-1 

type II receptor (IL-1R2). However, since IL-1R2 contains only short cytoplasmic terminus and lacks 

signaling-competent part of intracellular domain specific for IL1R1, it is incapable of intracellular 

signaling and serves as decoy receptor that blocks ligand action. Together with IL-1Ra, IL-1R2 serves 

as a negative regulator of IL-1β signaling (Weber et al. 2010; Palomo et al. 2015; Zou and Secombes 

2016). 

In addition to its role in regulation of immune response, fish IL-1β is also involved in regulation of 

other physiological processes particularly muscle metabolism. Recent studies have shown that IL-1β is 

able to induce dilation of coronary microvessels (Costa et al. 2015), as well as trigger expression of 

genes controlling muscle mass (Heidari et al. 2015), growth and metabolism (Pooley et al. 2013).  

1.1.7.2. Identification of IL-1β in fish 

The first fish IL-1β cDNA sequence was identified by Secombes et al. (1998) in trout and exhibited 

49-56% amino acid identity to the mammalian IL-1β. Interestingly, the trout IL-1β did not possess a 

putative ICE cleavage site required for the maturation-cleavage of the mammalian IL-1β. 

Nevertheless, the expression of trout cytokine could be induced in head kidney tissue and leukocytes 

following PAMPs (in this case LPS, lipopolysaccharid) stimulation (Secombes et al. 1998; Zou et al. 

1999a), suggesting its pro-inflammatory nature. In teleosts, IL-1β is not constitutively expressed but 

activated only after in vitro stimulation with different PAMPs, or as the result of various infections in 

vivo (Reyes-Cerpa et al. 2012). So far IL-1β has been characterized in various fish species including:  

rainbow trout, Oncorhynchus mykiss (Zou et al. 1999a), common carp, Cyprinus carpio (Fujiki et al. 

2000), sea bass, Dicentrarchus labrax (Scapigliati et al. 2001), gilthead seabream, Sparus aurata 

(Pelegrin et al. 2001), small spotted catshark, Scyliorhinus canicula (Bird et al. 2002b), channel 

catfish, Ictalurus punctatus (Wang et al. 2006), Nile tilapia, Oreochromis niloticus (Lee et al. 2006), 

haddock, Melanogrammus aeglefinus (Corripio-Miyar et al. 2007), yellowfin sea bream, 
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Acanthopagrus latus (Jiang et al. 2008), orange-spotted grouper, Epinephelus coioides (Lu et al. 

2008), southern bluefin tuna, Thunnus maccoyii (Polinski et al. 2013). All known fish IL-1β are 

characterized by conserved family signature [FCL]-x-S-[ASLV]-xx-[PRS]-xx-[FYLIV]-[LI]-[SCAT]-

T- xxxxxxx-[LIVMK]. 

1.1.7.3. Isoforms of IL-1β in fish 

Additional isoforms of IL-1β are quite often in teleost fish, due to the fact that many fish species are 

tetraploid and have undergone the WGD. Second IL-1β gene (IL-1β2) was first described in rainbow 

trout (Pleguezuelos et al. 2000). Comparison of the two trout genes revealed that IL-1β2 has 82% 

amino acid identity to the IL-1β1, and as other non-mammalian IL-1β genes, no putative ICE cleavage 

site. Induction of trout IL-1β2, as it was already shown with IL-1β1, can be elicited by in vitro 

cultured trout leukocytes (Pleguezuelos et al. 2000). Shortly after this discovery, two highly similar 

IL-1β genes have also been described in catfish, sharing 94.3% amino acid sequence identity. In this 

case, expression analysis indicated that both IL-1β genes are expressed in normal catfish tissues as 

well as after bacterial infection, but exhibited distinct expression profiles (Wang et al. 2006). Carp 

also contains two IL-1β isoforms, where IL-1β2 shares 74% identity with the IL-1β1 and 95-99% 

identity with other known IL-1β2 transcripts (Farrar et al. 1991). The post-stimulation expression of 

the two carp IL-1β isoforms differed in a way that the expression of IL-1β1 gene was on average at 

least ten-fold greater than that of IL-1β2. In light of all the above, and facts that the transcripts of IL-

1β2 had shown to have high substitution numbers in the coding regions and that predicted IL-1β2 

proteins are truncated compared to the IL-1β1, it was suggested that the IL-1β2 may be in fact a 

pseudogene (Farrar et al. 1991). Recently, two more IL-1β genes, IL-1β3 and IL-1β4, were cloned and 

characterized in rainbow trout (Husain et al. 2012). Interestingly, the IL-1β4 sequence has two stop 

codons, a deletion and an insertion, implying that salmon IL-1β4 is a transcribed pseudogene. It is also 

striking that IL-1β3 has only low identities to salmonid IL-1β1 (31.4–32.2%). A relatively high 

constitutive expression of trout IL-1β3 in gills, spleen and kidney and the up-regulation by PAMPs, 

pro-inflammatory cytokines and viral infection, suggests its role in inflammation and host defense 

(Husain et al. 2012). In addition, high expression of IL-1β3 in trout ovary suggests its possible role in 
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reproduction system (Husain et al. 2012). This is supported by IL-1β expression in seabream gonads, 

where it is associated with tissue reorganization during the adult reproductive cycle (Chaves-Pozo et 

al. 2009).  

Ultimately, these findings indicate the existence of two types of teleost IL-1β originating from the 

WGD. Type I teleost IL-1β genes, including IL-1β3, share a similar 6 coding exon structure as in 

tetrapods. Type II teleost IL-1β genes, including IL-1β1 and IL-1β2, lack one or two coding exons at 

their 5'-end, and share higher identities within this subgroup than within the type I subgroup (Husain et 

al. 2012). 

 

1.2. Atlantic bluefin tuna 

Atlantic (or Northern) bluefin tuna (ABFT), Thunnus thynnus, is a seawater ray-finned bony fish 

belonging to the Scombridae family. Genus Thunnus, also referred to as the true tunas, consists of 

eight species of tuna and is divided into two subgenera: Thunnus (Thunnus) or the bluefin group, and 

Thunnus (Neothunnus) or the yellowfin group. Bluefin tunas are the largest of the Thunnus species 

(Scombridae) and are characterized by a long lifetime, wide geographic distribution and endothermy 

(Block and Stevens 2001). Today tuna aquaculture comprises only three Thunnus species all 

belonging to the bluefin group: ABFT which is cultured in Croatia and several other Mediterranean 

countries, Southern bluefin tuna Thunnus maccoyii (SBFT) which is cultured in Australia, and Pacific 

bluefin tuna Thunnus orientalis (PBFT) cultured in Mexico and Japan (Benetti et al. 2016). 

1.6.1. ABFT biological properties 

Adult ABFT (Figure 1.7) is characterized by its impressive biological properties such as size (up to 3 

m in length and 700 kg of weight), swimming speed (up to 90 km/h) and enormous muscular strength 

which allows extensive transoceanic migrations (Benetti et al. 2016). Furthermore, since ABFT is a 

pelagic fish that never stops swimming to ventilate (like other tunas and mackerel sharks), it 

continuously generates heat which is used to elevate and maintain the temperature of highly-

aerobic tissues of the skeletal muscle, eye, brain and viscera above water temperatures. The ABFT, as 

all tunas, achieves this kind of endothermy by conserving nearly all the metabolic heat and the heat 
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generated by centrally located swimming muscle. It possesses special complex 

of arteries and veins lying very close to each other in the periphery of the body, called rete mirabile 

("wonderful net"), through which generated heat is being transferred from venous blood to the cold 

arterial blood coming from the gills. Also, a counter-current exchange system of blood flowing in 

opposite directions facilitates this heat transfer (Cech et al. 1984) (Figure 1.8). This way the effects of 

surface cooling are mitigated enabling ABFT to sustain up to 98% of its body temperature. This 

property of endothermy is highly developed in ABFT and contributes to its extensive capacity for 

migration (Graham and Dickson 2001) during which ABFT can withstand cold (down to 3°C) as well 

as warm (up to 30°C) temperatures while maintaining stable internal body temperature (Block et al. 

2001).  

 

 

 

 

 

 

 

 

Figure 1.7. Atlantic bluefin tuna, Thunnus thynnus. Taken from MarineBio.org. 
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Figure 1.8. Scheme of a counter-current heat exchange system between veins and artery in tuna. 

 

1.6.1. ABFT habitat 

Among the tuna, ABFT has the widest geographical distribution and it is the only large pelagic fish 

living permanently in temperate Atlantic waters (Bard et al. 1998; Fromentin and Powers 2005). It 

inhabits the pelagic ecosystem of the entire North Atlantic and its adjacent seas, from the equator to 

the North of Norway and from the Gulf of Mexico through the Mediterranean Sea to Black Sea 

(Mather et al. 1995). ABFT migrates seasonally from the Atlantic Ocean where it feeds, to the Gulf of 

Mexico or the Mediterranean Sea where it spawns (ICCAT, 2008) (Figure 1.9). Based on those two 

spawning grounds International Commission for the Conservation of Atlantic Tunas (ICCAT) has 

determined two ABFT populations: (i) Western population, which spawns in the Gulf of Mexico with 

spawning peak in May and (ii) Eastern population which spawns in the Mediterranean Sea with 

spawning peak in June (Zohar et al. 2016). Although ABFT preferentially occupies the surface and 

subsurface waters, both juveniles and adults frequently dive to depths of 500 m to 1000 m (Lutcavage 

et al. 2000; Block et al. 2001; Brill et al. 2001) in search for food and/or to cool the body temperature 

(Carey and Robinson 1981; Holland et al. 1992; Bard et al. 1998; Gunn and Block 2001; Musyl et al. 

2003).  
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Figure 1.9. Spatial distribution of Atlantic bluefin tuna, Thunnus thynnus (grey shading). The main migration 

routes (black arrows), main spawning grounds (dark grey areas) and the stock delimitation border (vertical red 

dashed line) are depicts. Reused from Fromentin and Powers (2005).  

 

1.6.3. Capture-based aquaculture of ABFT in Croatia 

ABFT represents one of the economically most important species for fisheries industry reaching 

extremely high commercial value. High market demand for ABFT dictated by constantly growing 

sushi-sashimi market in Japan resulted in overfishing and drastic ABFT population reductions (Benetti 

et al. 2016). ABFT farming was introduced into Mediterranean aquaculture in the early nineties 

aiming at the production of tuna with the optimal protein and fat content especially for sushi and 

sashimi market (Karakulak et al. 2016). Today, ABFT represents the most valuable finfish aquaculture 

product recognized, with more than half of the world’s total production concentrated in the 

Mediterranean Sea (Ottolenghi 2008). 

In Croatia, the first ABFT culture began two decades ago. Presently, tuna exported to the Japanese 

market accounts for 50% of the total national fisheries export, highlighting the importance of ensuring 
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optimal and sustainable conditions during its farming cycle. ABFT for aquaculture are targeted by 

purse-seiners and traditional trap fishermen during their spawning migrations (South Adriatic in 

Croatia) and transported to farming cages (Figure 1.10.A). Typical size range in the Mediterranean is 

from 40 to 400 kg, while in Croatia it is much lower, from 8 to 30 kg. Thus, while fattening period in 

the Mediterranean ranges from 3 to 7 months, farming period in Croatia is prolonged and lasts up to 2 

years until required product quality and commercial size are reached (Mylonas et al. 2010), which 

makes tuna farming in Croatia unique in the world. Consequently, ABFT aquaculture in Croatia is 

characterized as farming rather than fattening (Miyake et al. 2003). During farming period and 

depending on the baitfish availability, ABFT are fed with variety of fresh or defrosted, previously 

frozen baitfish, such as sardinella (Sardinella aurita), pilchard (Sardina pilchardus), herring (Clupea 

harengus), mackerel (Scomber scombrus), bogue (Boops boops), and some cephalopods (Vita et al. 

2004) (Figure 1.10.B). 

In order to allow recovery of wild population stocks and at the same time enable constant and 

sustainable supply, since the early 2000s the European Union has turned its focus to closing the life 

cycle of ABFT. Thus, research and development consortiums such as the REPRODOTT 

(Reproduction of the Bluefin Tuna in Captivity - feasibility study for the domestication of Thunnus 

thynnus) and SELFDOTT (Self-sustained Aquaculture and Domestication of Bluefin Tuna Thunnus 

thynnus) have been funded by the European Commission, European governments and companies 

(Karakulak et al. 2016; de la Gándara et al. 2016). The world’s largest land-based facility for ABFT 

has been completed in Spain in April 2015, allowing spawning of ABFT under controlled conditions 

and for prolonged period. The aim of such facility is to provide a sufficient amount and quantity of 

fertilized ABFT eggs and ABFT juveniles for both aquaculture industry and scientific research. 

Cyprus and Turkey have also reported significant progress regarding production of ABFT juveniles 

from their own broodstock, suggesting that the Mediterranean tuna aquaculture is one step closer to 

commercialization of closed-cycle production of ABFT (de la Gándara et al. 2016).  
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Figure 1.10. Capture-based Atlantic bluefin tuna farming in Croatia. A) Farming cage in tuna farm Sardina 

d.o.o., Brač; B) Manually feeding tuna with defrosted baitfish. 

 

1.6.4. Health status of farmed ABFT  

Sustainable aquaculture relies on successful health management of farmed fish. In case of cage 

culture, it is nearly impossible to have control over waterborne pathogens. Therefore, this kind of 

aquaculture often contributes to their outbreaks (Nowak 2007). Furthermore, stress due to limited 

space, presence of microorganisms, unpredictable environmental factors and unbalanced diet, is also a 

frequently present factor in cage culture. All the above can have a negative effect on host 

immunocompetence and ultimately lead to immunosuppression and disease outbreak. Due to its long-

distance migration, ABFT is exposed to numerous types of pathogens, e.g. parasites, viruses, bacteria 

(Munday et al. 2003; Nowak et al. 2006). However, pathogen-associated mass mortalities have been 

rarey reported, especially in the Mediterranean farming systems.  

Feeding tuna with imported frozen baitfish was a subject of polemics due to the potential risk of 

dissemination of viral agents, such as viral hemorrhagic septicaemia virus (VHSV) by the frozen 

herring (Jones et al. 1997; Marty et al. 1998) to tuna or to the wild fish populations. However, in 

almost 25 years of ABFT aquaculture in the Mediterranean, there was no evidence of presence of 

pathogenic viruses or clinical signs related to them. In Japanese facilities, viral diseases such as red 

seabream iridoviral desease (RSIVD) and viral nervous necrosis (NNV) were shown to cause 

mortalities of larval and juvenile PBFT (Balli et al. 2016). 

Although bacterial diseases are rare in farmed ABFT, there are few reports of bacterial agents causing 

mortalities without obvious clinical signs. For example, asymptomatic pasteurellosis which led to 

granulomatous changes in liver and spleen was unexpectedly discovered during harvest of seemingly 



Introduction 

51 

healthy ABFT (Perić 2002). On the other hand, Photobacterium damsela subsp. piscicida outbreak 

(Mladineo et al. 2006), provoked by increased water temperature and excess of volatile amines content 

in frozen baitfish (Šimat et al. 2009), led to mass mortalities of ABFT in 2003 and 2004 (Mladineo et 

al. 2006; Šimat et al. 2009). Furthermore, Photobacterium damsela subsp. damselae, Vibrio sp., and 

Tenacibaculum sp. caused septicemia-related lesions in ABFT larvae (Gustinelli et al. 2011). 

No economically threatening parasitoses have ever been reported in adult reared ABFT in the Adriatic 

or Mediterranean farming system. Nevertheless, parasitoses and mortalities are more common in other 

bluefin tuna species. For example, in SBFT occurrence of mortalities have been associated with 

encephalitis caused by opportunistic scuticociliate Uronema nigricans (Munday et al. 1997) or 

epizootic hyperinfections of sea lice Caligus chiastos and sanguinicolid blood fluke Cardicola forsteri 

(Hayward et al. 2010). Blood flukes appear to cause the most harmful parasitic diseases with potential 

deadly outcome in both SBFT and PBFT (Balli et al. 2016) (Table 1.1). However, although 

sanguinicolid blood flukes have been identified in farmed ABFT (Nowak et al. 2006, Aiken et al. 

2007; Palacios-Abella et al. 2015), they apparently do not cause ABFT mortalities (Table 1.1). 

 

 

 

 

 

 

 

 

Table 1.1. Cardicola species, their definitive hosts and effect on the industry. Mortality occurs in untreated 

SBFT and PBFT. Adapted from Balli et al. (2016). 

 

Metazoan parasite communities found in ABFT comprise trematodes, cestodes, nematodes, 

crustaceans, myxozoans and microsporidians (Mladineo et al. 2008). Digenean trematodes, with 

Didymosulcus katsuwonicola and Koellikerioides intestinalis as core species, are the most frequent 

and abundant parasite group found in various ABFT organs (Mladineo and Tudor 2004; Mladineo et 
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al. 2011). Interestingly, parasite assemblages according to host size differ between wild and captive 

ABFT; while the most diverse parasitofauna is usually found in the largest specimens of wild ABFT 

(Culurgioni et al. 2014), the opposite was observed in captivity. Mladineo et al. (2011) have reported 

a disappearance of three didymozoid species and decreasing trend of other parasite populations 

towards the end of the rearing cycle in ABFT from Croatian tuna farms. Such decreasing trend in 

parasite populations has rarely been observed in other intensive aquaculture productions (Yamaguti 

1970; Karlsbakk 2001). It is still unclear whether environmental factors or host immunity resistance 

and genetic predispositions, or combination of all mentioned, influence this phenomenon (Mladineo et 

al. 2011), but it certainly underlines the complexity of host-parasite interactions in which the 

behaviour of both the host and the parasite depends on the common interaction. 

Intensification of tuna aquaculture industry, especially closed-cycle production may contribute to the 

appearance of new tuna health issues. Understanding the immune response of the farmed ABFT will 

provide a better insight into potential health risks which can arise during farming process and perhaps 

enable their mitigation. Studies of immune response in tunas have predominately been focused on the 

PBFT and SBFT.  In case of PBFT, studies encompass ontogeny of the immune response (Watts et al. 

2003), cytokines expression (Kadowaki et al. 2009; Mladineo and Block 2010) as well as IgM and IgT 

expression in lymphoid organs (Mashoof et al. 2014) and Cardicola-infected organs (Polinski et al. 

2014a). Studies of SBFT immune response encompass analysis of serum Ig, lysozyme and 

complement activity (Watts et al. 2002), measurement of Cardicola-specific antibody presence (Watts 

et al. 2001; Aiken et al. 2008; Kirchhoff et al. 2012), lysozyme and complement activity (Kirchhoff et 

al. 2011, 2012) and cytokines expression (Polinski et al. 2013, 2014b). In contrary, ABFT immune 

system has not been widely studied and prior to this thesis, researchs referring to cloning and 

expression analysis of any important immune genes in this species were not undertaken.  
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1.7. Research objectives 

The main research objectives of this thesis were: 

1. Identification and characterization of the pro-inflammatory cytokines in reared Atlantic bluefin 

tuna (ABFT) Thunnus thynnus trough: 

• Cloning of the full-length complementary DNA (cDNA) and genomic DNA (gDNA) 

sequences of ABFT pro-inflammatory cytokines TNFα1, TNFα2 and IL-1β 

• Comparison of ABFT TNFα1, TNFα2 and IL-1β molecules with known sequences in other 

vertebrates, especially teleost fish 

• Designing of the 3D models of ABFT TNFα1, TNFα2 and IL-1β using homology modeling 

method 

2. Analysis of ABFT TNFα1, TNFα2 and IL-1β expression profiles in vitro:  

• in peripheral blood leukocytes (PBLs) after stimulation with different PAMPs, 

lipopolysaccharid (LPS) and polyinosinic-polycytidylic acid (Poly I:C) 

• in PBLs after stimulation with Pseudocycnus appendiculatus (Copepoda) and Didymosulcus 

katsuwonicola (Digenea) protein extracts 

3. Analysis of ABFT TNFα1, TNFα2 and IL-1β expression profiles in vivo: 

• in selected tissues of ABFT over the duration of the farming process (at three time points) 

• at the D. katsuwonicola and P. appendiculatus parasitation site  

4. Pathohistological analysis of gill filaments infected with D. katsuwonicola and P. appendiculatus  
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2. Materials and methods 

2.1. Atlantic bluefin tuna sampling  

Atlantic bluefin tuna (ABFT) Thunnus thynnus sampling (Table 2.1) was done on several occasions at 

tuna facility Sardina d.o.o., Brač. All fish handling procedures followed established standards for the 

care and use of animals, which were previously approved by the Ethical Committee for Animal 

Welfare at the Institute of Oceanography and Fisheries, Croatia. All sampling was performed using 

sterilized surgical kits. 

Table 2.1. Atlantic bluefin tuna ABFT sampling schedule with description of sampled fish, extracted tissue 

samples and purpose of sampling. Newly caught group comprised healthy juvenile fish that were caught in the 

central part of the South Adriatic Sea, transferred in a towing cage tugged to the farming site and left for 

acclimation for two weeks. Damaged group comprises reared juvenile fish with wounds and lesions on the skin 

that led to mortalities in some instances during the acclimation period. Fish necropsy included assessment of 

gross pathology and histopathology, bacteriology and parasitology as previously described (Mladineo et al. 

2006: Mladineo et al. 2011). Damaged fish showed signs of septicemia. Farm-acclimated group comprised 

healthy fish reared for 18 months. 
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2.2. Genomic DNA extraction 

Collected tail or dorsal fin clips were preserved in absolute ethanol until used. Genomic DNA (gDNA) 

was isolated from ABFT tail or dorsal fin clips, previously preserved in absolute ethanol, following a 

simplified DNA isolation procedure (Laird et al. 1991). Briefly, pieces of fin or liver/head kidney 

tissue were cut into smaller fragments (cca 5 mm), washed in distilled water and transferred into 1,5 

ml tube containing 200 µl of lysing buffer (0,01M Tris-HCl, 0,01M EDTA, 0,15M NaCl, 2% (w/v) 

SDS). Tissues were digested by adding 8 µl of Proteinase K (1mg/ml) to each tube and incubating in 

shaker set on 700 rpm for 3-4 h (or until tissue was digested) on 55°C. Samples were then centrifuged 

at 13,000 rpm (~17,900 x g) for 10 min at room temperature. Supernatant containing gDNA was 

transferred into clean 1.5 ml tube and gDNA was precipitated by adding 1 volume of isopropanol (e.g. 

200 µl of lysing buffer : 200 µl of isopropanol) and centrifuging at 3.000 rpm for 10 min. Supernatant 

was discarded and the pellet containing gDNA was washed with 800 µl of 70% ethanol and 

centrifuged for 10 min. The pellet was air-dried for 15-20 min and dissolved in 20-40 µl of TE buffer 

(0.05M Tris-HCl, 1mM EDTA). DNA quantity and quality were assessed using a spectrophotometer 

(Eppendorf, Qiagen, Ilden, Germany) at 260 and 280 nm. Samples with a 260/280 ratio between 1.7 

and 1.9 were used as templates in PCR reactions. After isolation, the gDNA was kept at -20 °C for 

long-term storage. 

2.3. RNA isolation 

Collected ABFT head kidney, liver or gill tissue samples were stored in RNAlater (Qiagen) at –20 °C 

until RNA extraction. Total RNA was isolated from liver, head kidney and gill tissues, and peripheral 

blood leukocytes (PBL). Total RNA was extracted from 50 to 100 mg of liver, head kidney or gill 

tissue and 5-10 x 106 cells using Tri Reagent (Sigma Aldrich, USA) following the manufacturer’s 

instructions. Briefly, after samples were manually homogenized in 1 mL of TRI Reagent, 

homogenates were incubated at room temperature (rt) for 5 minutes (min) and 200 ml of chloroform 

was added. Samples were shaken vigorously for 15 seconds (sec), incubated at rt for 15 min and 

centrifuged at 12,000 x g for 15 min at 4 ºC. Aqueous (upper) phase was transferred into a new tube 

and RNA was precipitated by adding equal volumes of isopropanol (Sigma Aldrich). Samples were 
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then vortexed for 5-10 sec, incubated at rt for 5 min and centrifuged at 12,000 x g for 10 min at 4 ºC. 

Supernatant was removed and the RNA precipitate (gelatinous whitish pellet on the bottom of the 

tube) was subsequently washed with 1 ml of 75 % ethanol and centrifuged at 12,000 × g for 5 min at 

rt. After supernatant was removed, the RNA pellet was air dried for 3-5 min and dissolved in 20-40 µl 

RNase/ DNase free water (Sigma Aldrich). RNA was quantified using a Nanodrop Spectrophotometer 

(Nanodrop Technologies) and stored at -80 °C if not used immediately. 

2.4. Synthesis of cDNA  

Prior to cDNA synthesis, total RNA was treated with 1 unit/µl of RNase free DNase I (Thermo 

Scientific) following the manufacturer's instructions. Briefly, the reaction mix was prepared by adding 

1 µg of RNA sample, 1 µl of 10x reaction buffer with MgCl2 (supplied with the kit), 1 µl of RNase 

free DNase I and DEPC-treated Water to 10 µl. The mix was then incubated at 37 °C for 30 min. To 

inactivate Dnase I without degradation of RNA, 1 µL 50 mM EDTA was added to reaction mix and 

incubated at 65 °C for 10 min.  

cDNA was synthesised from 1 µg of RNA using High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, UK) following manufacturer's instructions. Reverse transcription (RT) master 

mix was prepared on ice from 2 µl of 10x RT Buffer, 0,8 µl of 25x dNTP Mix (100 mM), 2 µl of 10x 

RT Random Primers, 1 µl of RNase Inhibitor, 1 µl of MultiScribe™ Reverse Transcriptase and 3.2  µl 

of Nuclease-free H2O per reaction. Subsequently, 10 µl of RT master mix was combined with 10 µl of 

RNA and incubated at 25 °C for 10 min, 37 °C for 120 min and 85 °C for 5 min. cDNA prepared as 

described was used as a template for PCR and real-time PCR.  

2.5. Cloning and sequencing 

For cloning purposes, PCR products were first ligated into pGEM-T Easy Vector (Promega, Madison, 

WI) by mixing 3 µl of PCR product with 5 µl of 2X Rapid Ligation Buffer, 1 µl of T4 DNA Ligase (3 

Weiss units/µl) and 1 µl of pGEM®-T Easy Vector (50 ng) and incubated at 4 °C over night (ON). 

Ligation reactions were then transfected into RapidTrans TAM1 competent E. coli (Active Motif, US) 

by adding 2 µl of each legation reaction into separate tubes containing competent cells and placed on 

ice for 20 minutes. The cells were then heat-shocked for 45 seconds in a water bath at exactly 42 °C 
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and immediately returned to ice for another 2 minutes. Then, 250 µl of Super Optimal broth with 

Catabolite repression (SOC) medium (Invitrogen) was added to every tube and incubated for 1.5 hours 

at 37 °C with shaking (~150 rpm). Subsequently, 100 µl of each transformation culture was plated 

onto lysogeny broth (LB) agar (Invitrogen) containing 100 µg/ml of ampicillin, and left to grow at 37 

°C ON. Clones were than screened for PCR insert using T7 and SP6 primers (Table 2.2). Colonies 

containing the correct size insert were grown overnight in 5 ml LB medium (Invitrogen) containing 5 

µl of ampicillin (100 µg/ml), in shaking incubator at 200 rpm and 37 °C. Plasmid DNA from at least 5 

independent colonies was purified using a QIAprep Spin Miniprep kit (Qiagen) following the 

manufacturer's instructions. All the buffers and columns were supplied with the kit. Briefly, 1-5 ml 

bacterial overnight culture was pelleted by centrifugation at >8000 rpm (6800 x g) for 3 min on rt. 

Pelleted bacterial cells were then resuspended in 250 μl Buffer P1 and transferred to a new 

microcentrifuge tube. To lyse bacterial cells, 250 μl of Buffer P2 was added and the reaction was 

mixed thoroughly by inverting the tube 4–6 times until solution became clear and blue. The reaction 

was neutralized by adding 350 μl of Buffer N3 and mixing (by inverting the tube 4-6 times) until the 

solution became colorless. The reaction mix was then centrifuged for 10 min at 13,000 rpm (~17,900 x 

g) and approximately 800 μl of supernatant was transferred to the QIAprep 2.0 spin column, and 

centrifuged for 60 s at 13,000 rpm. The QIAprep 2.0 spin column was washed by adding 0.75 ml of 

Buffer PE and centrifuged for 30-60 sec at 13,000 rpm. The QIAprep 2.0 spin column was placed in a 

clean 1.5 ml microcentrifuge tube. To elute DNA, 35 μl of Buffer EB (10 mM TrisCl, pH 8.5) was 

added to the center of the QIAprep 2.0 spin column, incubated for 1 min, and centrifuged for 1 min at 

13,000 rpm. 

The purified plasmids were sent to Macrogen (the Netherlands) for sequencing with vector specific 

primers T7 forward and SP6 reverse.  

2.6. Rapid Amplification of cDNA Ends (RACE) 

The GeneRacer™ Kit (Thermo Fisher Scientific, USA) provides a method to obtain full-length 5′ and 

3′ ends of cDNA using known cDNA sequence, ensuring the amplification of only full-length 
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transcripts via elimination of truncated messages from the amplification process. All reagents were 

supplied with the kit except ethanol.  

2.6.1. Production of complementary DNA  

Production of cDNA for 3' and 5' RACE was performed from 2 µg of total RNA, using a GeneRacerTM 

Kit following the manufacturer’s instructions (Figure 2.1). Main steps of this method were: 

1) Dephosphorylation of total RNA or mRNA (removal of 5' end phosphates from RNA species 

that lack protective 5’ cap structure). This step eliminates truncated mRNA and non-mRNA from 

subsequent ligation with the GeneRacer™ RNA Oligo (Figure 2.1.A). 

• In order to remove the 5′ phosphates, total RNA was treated with calf intestinal 

phosphatase (CIP) by mixing 2 μl of total RNA (5 μg), 1 μl of 10X CIP Buffer, 1 μl of 

RNaseOut™ (40 U/μl), 1 μl of CIP (10 U/μl) and 5 μl of diethyl pyrocarbonate (DEPC) 

treated water. Reaction was gently mixed by pipetting, briefly vortexed, centrifuged to 

collect fluid and incubated at 50 °C for 1 hour. After incubation, reaction was once more 

centrifuged briefly and placed on ice. RNA was precipitated by adding 90 μl of DEPC 

treated water and 100 μl of phenol:chloroform:isoamyl alcohol (25:24:1). Reaction was 

then vortexed vigorously for 30 sec and centrifuged at 13,000 rpm for 5 min at rt. Top, 

aqueous phase (~100 μl) was transferred to a new tube and 2 μl 10 mg/ml mussel 

glycogen and 10 μl 3 M sodium acetate (pH 5.2) were added. The reaction was 

subsequently washed with 220 μl of 95% ethanol and frozen on dry ice for 10 minutes. 

RNA was pelleted by centrifuging at 13,000 rpm for 20 min at 4 °C. Supernatant was 

removed and 500 μl of 70% ethanol was added. Reaction was then inverted several times, 

vortexed briefly and centrifuged at 13,000 rpm for 2 min at 4 °C. Remaining ethanol was 

removed by a pipet and the pellet was air-dried for 1-2 minutes at rt. The RNA pellet was 

resuspended in 7 μl of DEPC water.  

2) Removal of the 5′ cap structure from intact, full-length mRNA. This treatment leaves a 5′ 

phosphate required for ligation to the GeneRacer™ RNA Oligo (Figure 2.1.B). 
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• In order to remove the 5′ cap structure from intact, previously obtained full-length mRNA, 

RNA from the previous step was treated with tobacco acid pyrophosphatase (TAP) by mixing 

7 μl of RNA, 1 μl of 10 x TAP Buffer, 1 μl of RNaseOut™ (40 U/μl) and 1 μl of TAP (0.5 

U/μl). Reaction was gently mixed by pipetting, briefly vortexed, centrifuged to collect fluid 

and incubated at 37 °C for 1 h. After incubation, reaction was once more centrifuged briefly 

and placed on ice. RNA was precipitated and pelleted as described under 1). 

3) Ligation of the GeneRacer™ RNA Oligo to the 5′ end of the mRNA using T4 RNA ligase. The 

GeneRacer™ RNA Oligo provides a known priming site for GeneRacer™ PCR primers for 

amplification of 5’ end (Figure 2.1.C). 

• The GeneRacer™ RNA Oligo was ligated to the 5′ end of the mRNA using T4 RNA ligase by 

adding 7 μl of decapped RNA to the tube containing the pre-aliquoted, lyophilized 

GeneRacer™ RNA Oligo (0.25 μg) and incubating at 65 °C for 5 min to relax the RNA 

secondary structure. Reaction was then placed on ice to chill for 2 min and briefly centrifuged. 

Subsequently, the following reagents, 1 μl of 10x Ligase Buffer, 1 μl of 10 mM ATP, 1 μl of 

RNaseOut™ (40 U/μl) and 1 μl of T4 RNA ligase (5 U/μl) were add to the tube and incubated 

at 37 °C for 1 h. After incubation, reaction was once more centrifuged briefly and placed on 

ice. RNA was precipitated and pelleted as described under 1). 

4) Reverse transcription of the ligated mRNA using chosen reverse transcriptase and the 

GeneRacer™ Oligo dT Primer to create RACE ready first-strand cDNA with known priming sites 

at the 5′ and 3′ ends (Figure 2.1.D).  

• Ligated mRNA was reverse transcribed using SuperScript™ III RT and the GeneRacer™ 

Oligo dT Primer to create RACE ready first-strand cDNA with known priming sites at the 5′ 

and 3′ ends. The following reagents were added to the 10 μl of previously obtained ligated 

RNA: 1 μl of GeneRacer™ Oligo dT Primer, 1 μl of dNTP Mix and 1 μl of distilled water. 

The reaction was then incubated at 65 °C for 5 min (to remove any RNA secondary structure), 

chilled on ice for at least 1 min and briefly centrifuged. The following reagents were 
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subsequently added to 13 μl of ligated RNA and primer mixture: 4 μl of 5x First Strand 

Buffer, 1 μl of 0.1 M DTT, 1 μl of RNaseOut™ (40 U/μl) and 1 μl of SuperScript™ III RT 

(200 U/μl). Reaction mix was then incubated at 25 °C for 5 min, briefly centrifuged and again 

incubate at 50 °C for 60 min. RT reaction was inactivated by heating at 70 °C for 15 min and 

chilling on ice for 2 min. Subsequently, 1 μl of RNase H (2 U) was added to the reaction mix 

and incubated at 37 °C for 20 min and stored at -20 °C until used. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Overview of the production of cDNA for 3' and 5' RACE using GeneRacerTM Kit, as described in the 

user manual. A) Dephosphorylation of total RNA or mRNA. To remove 5' end phosphates, RNA was treated 

with calf intestinal phosphatase (CIP). This step eliminates uncapped mRNA and non-mRNA from subsequent 

ligation; B) Removal of the 5′ cap structure from full-length mRNA using tobacco acid pyrophosphatase (TAP). 

This step leaves free 5′ phosphate required for ligation; C) Ligation of the GeneRacer™ RNA Oligo to the 5′ end 

of the mRNA using T4 RNA ligase. This step provides a known priming site for GeneRacer™ PCR primers 

after transcription of mRNA; D) Reverse transcription of the ligated mRNA using SuperScript™ III reverse 

transcriptase and the GeneRacer™ Oligo dT Primer. This step provides RACE ready first-strand cDNA with 

known priming sites at the 5′ and 3′ ends. 
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2.6.2. Rapid Amplification of cDNA Ends PCR (RACE-PCR) 

Amplification of 5' and 3' cDNA ends was performed using GeneRacerTM Kit and following the 

manufacturer’s instructions. Main steps were: 

1. In order to obtain 5′ ends, the first-strand cDNA (obtained as described in Section 2.6.1.), was 

amplified using a reverse gene specific primer (see Section 2.7.) (Table 2.2) and the 

GeneRacer™ 5′ Primer (homologous to the GeneRacer™ RNA Oligo) (Figure 2.2). Only 

mRNA that has the GeneRacer™ RNA Oligo ligated to the 5′ end and that is completely 

reversely transcribed, will be amplified using PCR. If needed, additional PCR with nested or 

semi-nested primers was performed. 

2. In order to obtain 3′ ends, the first-strand cDNA (obtained as described in Section 2.6.1.), was 

amplified using forward gene specific primer (see Section 2.7.) (Table 2.2) and the 

GeneRacer™ 3′ Primer (homologous to the GeneRacer™ Oligo dT Primer) (Figure 2.3). Only 

mRNA that has a polyA tail and is reversely transcribed, will be amplified using PCR. If 

needed, additional PCR with nested or semi-nested primers was performed. 

 

 

 

Figure 2.2. Overview of the amplification of 5' cDNA end using reverse gene primers and the GeneRacer™ 5′ 

Primers. 

 

 

 

 

Figure 2.3. Overview of the amplification of 3' cDNA end using forward gene specific primers and the 

GeneRacer™ 5′ Primers. 
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2.7. Cloning and sequencing of ABFT TNFα1, TNFα2 and IL1β cDNA and gDNA using 

RACE method 

The initial ABFT TNFα1, TNFα2 and IL1β fragments were isolated using cDNA derived from liver 

tissue RNA and the primers bftTNF1-F/bftTNF1-R (Table 2.2; Fig 2.4.A), bftTNF2-F/bftTNF2-R 

(Table 2.2; Fig 2.4.B) and bftIL1-F/bftIL1-R (Table 2.2; Fig 2.4.C) respectively, designed to areas of 

the highest homology with aligned known teleost TNF sequences. PCR was run in 25 µl reactions 

combining 1 µl of each primer (10 µM), 1 µl of cDNA, along with 2.5 µl of 10x PCR buffer, 1 µl of 

MgCl2  (50 mM), 0.5 µl of dNTP (0.25 mM each), 0.1 µl of BIOTAQTM DNA Polymerase (5 u/µl; 

Bioline, UK) and DNase/RNase free PCR water, to a volume of 25 µl. PCR conditions for TNFα were 

as follows: 1 cycle of 94 °C for 5 min, 35 cycles of 94 °C for 30 sec, 58 °C (for TNF1)/65 °C (for 

TNF2) for 30 sec and 72 °C for 1 min, followed by 1 cycle of 72 °C for 10 min. In order to obtain the 

initial sequence of IL1β, touchdown PCR was performed. PCR products were visualized on a 1.5 % 

agarose gel containing ethidium bromide (100 ng/ml). Products of adequate size were cloned and 

sequenced as described in Section 2.5. The initial IL1β, TNFα1 and TNFα2 ABFT fragments were 

then used to design ABFT specific primers (see Table 2.2). 

The 3’ and 5’ ends of ABFT TNFα1, TNFα2 and IL1β mRNA were obtained using RACE-PCR with 

cDNA prepared for 3’ and 5’ RACE as described in Section 2.6. PCR was run in 25 µl reactions 

combining 0.5 µl of each primer (10 µM), 1 µl of cDNA, along with 2.5 µl of 10x PCR buffer, 1 µl of 

MgSO4 (50 mM), 0.5 µl of dNTP (10 mM), 0.1 µl of Platinum Taq DNA Polymerase (5 u/µl; 

Invitrogen) and DNase/RNase free PCR water, to a volume of 25 µl. PCR conditions for both runs of 

nested PCR were as follows: 1 cycle of 94 °C for 2 min; 35 cycles 94 °C for 30 sec, 50 °C (first run) 

and primer specific temperature (second run), 72 °C for 1 min; followed by 1 cycle of 7 °C for 10 min. 

The 3’ end of the TNFα1 cDNA was obtained in two parts. PCR was first carried out with primer pair 

bftTNF1-3’F1/GeneRacerTM 3’ Primer, with the second semi-nested PCR carried out with bftTNF1-

3’F2/GeneRacerTM 3’ Primer. This led to the amplification of an incomplete 3’ untranslated region 

(UTR). The complete 3’ UTR was obtained by PCR carried out with primer pair bftTNF1-
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3’F3/GeneRacerTM 3’ Primer followed by a nested PCR carried out with bftTNF1-3’F4/GeneRacerTM 

3’ Nested Primer (Figure 2.4.A). The 5’ end of TNFα1 was obtained using PCR carried out with 

primer pair bftTNF1-5’R1/GeneRacerTM 5’ Primer, followed by the second nested PCR carried out 

with bftTNF1-5’R2/GeneRacerTM 5’ Nested Primer (Figure 2.4.A).  

The 3’ end of TNFα2 cDNA sequence was obtained using primer pair bftTNF2-3’F1/ GeneRacerTM 3’ 

Primer, with the second nested PCR carried out with bftTNF2-3’F2/ GeneRacerTM 3’ Nested Primer 

(Figure 2.4.B). The complete 5’ UTR of the TNFα2 sequence was obtained using nested PCR carried 

out first with primer pair bftTNF2-5’R1/GeneRacerTM 5’ Primer and then bftTNF2-5’R2/GeneRacerTM 

5’ Nested Primer.  

The IL-1β 3’ end was obtained using primer pair bftIL1-3’F1/ GeneRacerTM 3’ Primer, with the 

second nested PCR carried out with bftIL1-3’F2/ GeneRacerTM 3’ Nested Primer (Figure 2.4.C). The 

5’ end was obtained in two parts. PCR was first carried out with primer pair bftIL1-5’R1/GeneRacerTM 

5’ Primer, with the second nested PCR carried out with bftIL1-5’R2/GeneRacerTM 5’ Nested Primer, 

but gave an incomplete 5’ UTR. The complete IL-1β 5’ UTR was obtained using PCR carried out with 

primer pair bftIL1-5’R3/GeneRacerTM 5’ Primer followed by a nested PCR carried out with bftIL1-

5’R4/GeneRacerTM 5’ Nested Primer (Figure 2.4.C).  

The IL1β, TNFα1 and TNFα2 gene organization was obtained by PCR amplification of genomic 

DNA, using primer combinations bftTNF1-gF/bftTNF1-gR, bftTNF2-gF/bftTNF2-gR and bftIL1-

gF/bftIL1-5’R1 (Table 2.2; Figure 2.4) designed within the 5’ and 3’ UTR’s of the generated full-

length cDNA sequences. PCR conditions were as follows: 1 cycle of 94 °C for 2 min; 35 cycles of 94 

°C for 30 sec, annealing set at primer specific temperature, 72 °C for 2 min; followed by 1 cycle of 72 

°C for 10 min.  

All PCR products were cloned and sequenced as described in Section 2.5. 
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Table 2.2. Oligonucleotide primers used to clone and/or amplify the ABFT TNFα1, TNFα2, IL-1β and β-actin 

genes. 
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Figure 2.4. Positions of primers used to clone the ABFT TNFα1 (A), TNFα2 (B) and IL-1β (C) cDNA and 

gDNA sequences. Primers are illustrated with arrows and lines represent relative size and positions of the 

resulting products (Prod). 
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2.8. ABFT TNFα1, TNFα2 and IL1β sequence characteristics and phylogenetic analysis 

Sequences were analyzed for similarity with other known vertebrate sequences using Basic Local 

Alignment Search Tool (BLAST) (Altschul et al. 1990). Comparison between more than two 

sequences was performed using the CLUSTAL W (v1.60) multiple sequence alignment package 

(Thomson et al. 1994). Calculation of amino acid and nucleotide homology between sequences was 

performed using MatGat (Matrix Global Alignment Tool) (Campanella et al. 2003). The 

transmembrane region predictions were made using TMpred (Hofmann and Stoffel 1993). 

Phylogenetic trees were generated with MEGA 5 (Tamura et al. 2011) using the neighbour-joining 

method, p-distance and complete deletion of gaps. The branches were validated by bootstrap analysis 

from 10 000 repetitions, which are represented by numbers at the branch nodes. Predicted amino acid 

sequences were analyzed by SignalP version 3.0 (Dirløv Bendtsen et al. 2004) and the hydrophobicity 

profile was determined using Kyte and Doolittle plots (Kyte and Doolittle 1982). Protein family 

signatures were predicted using the PROSITE database (Hulo et al. 2007) and glycosylation sites were 

determined using NetNGlyc 1.0. Server (Gupta et al. 2004). 

2.9. ABFT TNFα1, TNFα2 and IL-1β protein modeling 

The three-dimensional models of ABFT TNFα1, TNFα2 and IL-1β were predicted by homology 

modeling using the SWISS-MODEL Protein Modeling Server (Arnold et al. 2006). Prediction tools 

PsiPred (Jones 1999), DISOPRED (Jones and Ward 2003) and MEMSAT (Jones et al. 1994) within 

SWISS-MODEL Workspace were used to predict the secondary structure elements, occurrence of 

disordered regions and putative transmembrane regions, respectively, in order to optimize selection of 

possible modeling templates. Identification of a suitable template for the ABFT protein structures 

prediction was performed using BLAST (Altschul et al. 1997) search implemented in SWISS-

MODEL Workspace (Arnold et al. 2006). As the sequence identities between ABFT proteins and 

potential homologous templates with known three-dimensional structure were, in all three cases, less 

than 50%, alternative sequence alignment methods were used to improve quality of the modeling 

results. Alignments of the protein sequences were made with the ClustalW program in MEGA5 

(Tamura et al. 2011) and some manual refinements were carried out to account for the positions of 
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critical structural features. Several templates and associated alignments were tested and stereo 

chemical plausibility, packaging quality and global structure quality of the resulting models were 

evaluated using the PROCHECK (Laskowski et al. 1993), ANOLEA (Melo and Feytmans 1998) and 

QMEAN (Benkert et al. 2008) programs. Finally, on the basis of the best results, human TNFα (PDB 

id: 1tnf), human TNFα (PDB id: 2zjc, chain B) and human IL-1β (PDB id: 1iob, chain A) were 

identified as the most suitable structural templates for model prediction of the ABFT TNFα1, TNFα2 

and IL-1β, respectively. The resulting theoretical models were displayed as protein monomers and 

analyzed with SWISS-PDB viewer DeepView (Guex and Peitsch 1997). While the IL-1β molecule 

seemed to exist as a monomer, the trimeric models of ABFT TNFα1 and TNFα2 were generated by 

superposing the homology model with each of the template’s chains (A, B and C). 

2.10. Preparation of parasite protein extracts (PE) 

Adult digenean Didymosulcus katsuwonicola (N=30) (Figure 2.5) were collected from fish gills and 

kept on ice in phosphate buffer saline (PBS, pH 7.4) during transportation to laboratory. Didymozoids 

were first extracted from connective-tissue cysts, washed and then frozen in PBS (pH 7.4) at -20 °C. 

After removal from gills, adult copepod Pseudocycnus appendiculatus (N=6) (Figure 2.6) were 

immediately frozen in PBS at -20 °C. Once thawed, PBS buffer was decanted and the remaining 

parasites were weighted. Upon adjusting final concentration of samples with PBS (0.25 g of original 

wet weight per ml), parasites were frozen in liquid nitrogen and manually homogenised by sterile 

pestle. Samples were intermittently sonicated (Sonoplus 2200, Bandelin, Germany) on ice for 60 sec 

using following instrument set up: duty cycle 10%, power 20%. After centrifugation at 4 °C, 600 x g 

for 10 sec, supernatants containing total protein samples were collected and filtered using 0.45 µm 

syringe filters. Protein concentration of each sample was determined using Bradford assay or 

NanoDrop 1000 and adjusted to 1 mg/ml with Leibovitz's L-15 medium (Thermo Fisher Scientific, 

USA).  
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Figure 2.5. ABFT gills infected with didymozoid trematode Didymosulcus katsuwonicola. A) Two didymozoid 

connective-tissue cysts attached to gill filaments; B) Each cyst contains two hermaphroditic individuals. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Atlantic bluefin tuna gills infected with siphonostomatoid copepod Pseudocycnus appendiculatus. 

A) Male; B) Female. 
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2.11. Establishment and stimulation of ABFT peripheral blood leukocytes 

Blood was obtained from the severed lateral artery in the pectoral dent of healthy ABFT, collected into 

EDTA treated collection tubes and held on ice during transportation to the laboratory settings. ABFT 

peripheral blood was diluted 1:5 with Leibovitz's L-15 medium, supplemented with 10 u/ml of 

heparin, 2% foetal calf serum (FCS) (Thermo Fisher Scientific, USA), 1% penicillin/streptomycin P/S 

(10000 u/ml Penicillin G sodium; 10000 µg/ml Streptomycin sulphate). Diluted blood was then 

layered onto 51% iso-osmotic Percoll (Thermo Fisher Scientific, USA) solution (1:3) and peripheral 

blood leukocytes (PBLs) were separated from the blood by centrifugation at 2000 x g for 20 min. The 

PBLs were removed from the interface and washed twice in L-15 medium now supplemented with 

15% FCS and 1% P/S. To ensure viability greater than 95%, isolated cells were visualised by 

hemocytometer following trypan blue staining. Cells were then re-suspended in L-15 (1% P/S, 15% 

FCS) to a final concentration of 107 cells mL-1, seeded onto 6 well plates and left for acclimatisation 

for approximately 3 h at 23 °C. Afterwards, cultures were stimulated with 50 µg/ml LPS (Escherichia 

coli 0111:B4 lipopolysaccharides); 50 µg/ml Poly I:C (polyinosinic-polycytidylic acid sodium salt, 

Sigma); 1 µg/ml and 10 µg/ml of D. katsuwonicula PE; or 1 µg/ml and 10 µg/ml of P. appendiculatus 

PE for 1, 3, 5 and 12 h in triplicates. The treatments were terminated by re-suspending cells in 1 ml of 

TriReagent (Thermo Fisher Scientific, USA). 

2.12. Expression studies using real-time PCR 

For expression analysis of the three ABFT cytokines, ABFT β-actin was used as the reference gene. 

The initial ABFT β-actin fragment was amplified using mβactin-F and mβactin-R primers, designed 

initially to the mouse β-actin sequence (Table 2.2). PCR conditions for amplification of β-actin were 1 

cycle of 94 °C for 5 min, 20 cycles of 94 °C for 30 sec, 58 °C for 30 s and 72 °C for 1 min, followed 

by 1 cycle of 72 °C for 10 min. PCR products were cloned and sequenced as described in Section 2.5. 

and the partial sequence of ABFT β-actin was used to create specific primers for real-time PCR. 

The expression of IL-1β, TNFα1, TNFα2 and β-actin was measured using real-time PCR target-

specific primers bftIL1-rtF/rtR, bftTNF1-rtF/rtR, bftTNF2-rtF/rtR and bftβactin-rtF/rtR (Table 2.2). 

The suitability of each primer pair in real-time PCR assays was tested using conventional PCR with 
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cDNA and genomic DNA as templates. Samples loaded onto an agarose gel stained with SYBRTM 

Safe DNA Gel Stain (Thermo Fisher Scientific, USA) confirmed that primer pairs did amplify a 

product of the correct size from the cDNA and that there was no genomic DNA contamination. A 

negative control (no template) reaction was also performed for each primer pair tested.  

Real-time PCR was carried out using SYBR green I (Thermo Fisher Scientific, USA) in a LightCycler 

480 System (Roche Applied Science, UK). Template cDNA (prepared as described previously) was 

diluted with 200 µl of TE buffer (pH 8.0) and each sample was run in duplicate. The cycling protocols 

were as follows: an initial denaturation of 10 min at 95 °C, followed by 40 cycles of 95 °C for 30 sec, 

annealing at primer specific temperature (58-64 °C) for 30 sec and 72 °C for 30 sec, acquiring the 

melting curve from 75 to 98 °C. Fluorescence outputs were measured and recorded at 80 °C after each 

cycle for 40 cycles and quantified by comparison with a serial 10-fold dilution of pooled reference 

samples for each primer pair used. Transcript levels of both genes were calculated using the 

LightCycler 480 System integrated software. Expression levels of ABFT IL-1β, TNFα1 and TNFα2 

cDNAs were normalized to the reference gene, ABFT β-actin, which had an average (± SEM) ct value 

of 16.70 ± 0.26 in all samples. The relative expression (presented as arbitrary units) was calculated as 

the expression of the target gene divided by that of β-actin times 100,000. The results represent the 

average + SEM of each group of fish.  

One-way PERMANOVA based on Euclidean distance was used to test the null hypothesis of no 

differences in expression level of all three cytokines. Significance was set at p=0.05, with p-values 

being obtained using 999 permutations of unrestricted permutation of raw data with Monte-Carlo 

simulation included. PERMANOVA is a flexible and robust test that can be used with any distance 

similarity matrix and it constructs an F-ratio from sums of squared distances within and between 

groups that is analogous to Fisher's F-ratio (Anderson 2001). 
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2.13. Microscopy of semithin sections 

For patohistological analyses, small fragments of parasite-infected gills were collected and fixed in 

3.5% paraformaldehyde and 3% glutaraldehyde in 0.1 M PBS (phosphate buffer solution). Tissue was 

postfixed in 1% osmiumtetroxide for 1 h, then dehydrated in an ascending series of acetone and 

embedded in Durcopan resin. Semithin sections (0.5 µm) were stained with 1% toluidine and 

examined under an Olympus BX 40 light microscope. 
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3. Results 

3.1. Identification and characterization of ABFT TNFα1, TNFα2 and IL-1β 

3.1.1. Identification of ABFT TNFα1 and TNFα2 complete cDNA and gDNA sequences 

The ABFT TNFα1 cDNA sequence is 1386 bp long (GenBank ID: JQ807663; Figure 3.1) and consists 

of a 147 bp 5’ UTR, a 744 bp open reading frame (ORF) encoding a protein of 247 amino acids and a 

495 bp 3’ UTR containing AU-rich elements (ARE), including seven instability motifs (ATTTA), two 

endotoxin-responsive motifs (ATATTTAT and TTATTTA) and one polyadenylation signal 

(ATTAAA) located 17 bp upstream of the polyA tail.  

The ABFT TNFα2 cDNA sequence is 999 bp (GenBank ID: KF134538; Figure 3.2) long with a 738 

bp ORF encoding a protein of 245 amino acids. The 5’ UTR consists of 63 bp and the 3’ UTR of 197 

bp, containing two alternative non-canonical polyadenylation signals (ACTAAA), one located 150 bp 

and the other 16 bp upstream of the polyA tail. No ARE or endotoxin-responsive elements were 

present.  

The ABFT TNFα1 gene sequence (GenBank ID: JQ807664; Figure 3.1) measures 1889 bp and 

contains four exons interrupted with three short introns. The first exon includes 5’ UTR and the first 

186 bp of TNFα1 ORF. Exon two contains 52 bp and exon three contains 54 bp of the ORF. Finally, 

exon four includes 452 bp of the ORF and the entire 3’ UTR region. The three introns contain 121, 

111 and 271 nucleotides, respectively (Figure 3.3; Figure 3.4). Intron three is 1 bp smaller than in 

PBFT.  

The ABFT TNFα2 gene sequence (GenBank ID: KF134537; Figure 3.2) is 1908 bp long and also 

contains four exons and three introns. The first exon includes 5’ UTR and the first 174 bp of the ORF. 

Exon two contains 28 bp and exon three contains 57 bp of the ORF, while exon four includes 479 bp 

of the ORF and the entire 3’ UTR region. The three TNFα2 introns contain 127, 372 and 411 

nucleotides, respectively (Figure 3.3; Figure 3.4), while introns one and two are 2 and 1 bp smaller 

than in PBFT. 
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Figure 3.1. Full-length nucleotide (cDNA/gDNA) and deduced amino acid sequence of the ABFT TNFα1. The. 

ORF sequence is shown in upper case and UTR’s and intron sequences are shown in lower case. Features shaded 

include the start and stop codon. In the 3′UTR the 7 RNA instability motifs (ATTTA) are underlined, and a 

polyadenylation signal (ATTAAA) is indicated by double underlining. A potential N-glycosylation site (position 

94–96) is italicized and underlined, and potential endotoxin-responsive motifs (T/ATATTTAT) are shown in 

bold type. Intron splice sites are in bold and boxed. 
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Figure 3.2. Full-length nucleotide (cDNA/gDNA) and deduced amino acid sequence of the ABFT TNFα2. The 

ORF sequence is shown in upper case and UTR’s and intron sequences are shown in lower case. Features shaded 

include the start and stop codon. In the 3′UTR, two potential non-canonical polyadenylation signals (ACTAAA) 

are indicated by double underlining. Intron splice sites are in bold and boxed and parts of intron sequence that 

differ from those in PBFT TNFα2 are in bold and underlined. 
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Figure 3.3. Exon/intron size of ABFT TNFα1 and TNFα2 vs other known TNFs. The exon/intron sizes of the 

human, mouse and selected fish species TNFα were obtained from NCBI Human Genome Resources 

(http://www.ncbi.nlm.nih.gov/genome/). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Gene organisation and exon/intron size of ABFT TNFα1 and TNFα2 vs other known TNFα genes. 

Introns are indicated by grey boxes, UTR’s by black boxes and ORF’s by white boxes. The intron sizes of the 

human and mouse TNFα and selected fish species were obtained from NCBI Human Genome Resources 

(http://www.ncbi.nlm.nih.gov/genome/).  
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3.1.2. Analysis of ABFT TNFα1 and TNFα2 protein sequences 

Analysis of both ABFT TNFα predicted proteins (Figure 3.5) revealed a sequence 

IVIPQSGLYFVYSQA with excellent homology to the TNFα family signature [LV]-x-[LIVM]-x3-G-

[LIVMF]-Y-[LIVMFY]2-x2-[QEKHL]. The putative TNF-alpha converting enzyme (TACE) cut site is 

in position E84 - L85 of the ABFT TNFα1 amino acid sequence and in position T72 - L73 of the TNFα2 

sequence, resulting in mature peptides of 163 and 173 amino acids as in PBFT. A potential 

transmembrane domain located at position 35-55 (VSGTLLIILLCLGGILLFSWY) of TNFα1 

sequence and at position 31-53 (LTTAVLAFTFCFAAAAATALLVV) of TNFα2 sequence, were 

identified using the TMpred software (Hofmann and Stoffel 1993) indicating that both ABFT TNFα 

proteins can be membrane-bound. In comparison with other known vertebrate TNFα amino acid 

sequences it was revealed that two cysteine residues crucial for correct folding of the mature TNFα are 

conserved in both ABFT TNFα1 (C150 and C190) and TNFα2 (C143and C187). While the TNFα1 

molecule contained one potential N-glycosylation site at position 94–96, none were found in TNFα2. 

ABFT TNFα1 and TNFα2 shared the highest amino acid and nucleotide identity with the PBFT TNFα 

homologues (Table 3.1). ABFT TNFα1 also has relatively high identity to other perciformes TNFα 

molecules but has only 39% amino acid identity to TNFα2. This homology was reflected in the 

phylogenetic tree analysis (Figure 3.6), constructed using the NJ method, that grouped ABFT TNFα1 

with TNFα1 from the PBFT and the other Perciformes, branching away from Cypriniformes and 

Siluriformes. ABFT TNFα2, however, grouped with its homologue in PBFT and appeared closer to 

the Cyprinid and Silurid molecules.   
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Figure 3.5. Multiple alignment of the predicted ABFT TNFα1 and TNFα2 (shown in bold type) with selected 

known vertebrate TNFα molecules. Identical (*) and similar (: or .) residues identified using CLUSTAL W 

(v1.60) are indicated. The TNF family signature is boxed. The transmembrane domain is highlighted in light 
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grey, while a potential cleavage site that generates the mature peptide and two cysteine residues crucial for 

correct folding of the mature TNFα are in dark grey. The only aa difference to the PBFT TNFα1 sequence is 

indicated with (▼). No differences are seen between ABFT and PBFT TNFα2 sequences. The EMBL accession 

numbers of the TNFα genes are: PBFT TNFα1, BAG72141.1; Seabream, CAC88353.1; Flounder, BAA94969.1; 

Trout TNFα1, CAB92316.1; Trout TNFα2, CAC16408.1; PBFT TNFα2, BAG72142.1; Carp TNFα1, 

CAC84641.2; Carp TNFα2, CAC84642.2; Zebrafish, NP_998024.2; Mouse, BAA19513.1; Human, 

NP_000585.2. 

 

 

 

Table 3.1. Amino acid and nucleotide homology of ABFT TNFα1 and TNFα2 with human and selected fish 

sequences. 
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Figure 3.6. Phylogenetic analysis of the ABFT TNFα1and TNFα2 with other known vertebrate TNFα 

molecules. The sequences were aligned using CLUSTALW and the tree was generated with MEGA 4 using the 

neighbour-joining method. The branches were validated by bootstrap analysis from 2000 repetitions and are 

represented by numbers at the branch nodes. Human Fas ligand was used as outgroup. The GenBank accession 
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numbers of the TNFα sequences used in this study are as follows: Striped beakfish TNFα, ACM69339.1; Sea 

perch TNFα, AAR02413.2; Yellow croaker TNFα, ABK62876.1; Sea bass TNFα, AAZ20770.1; Striped 

trumpeter TNFα, ACQ98509; Orange-spotted grouper TNFα, AEH59794.1; Seabream TNFα, CAC88353.1; Red 

seabream TNFα, AAP76392.1; P. bluefin TNFα1, BAG72141.1; Green chromide TNFα, AEM59514.1; Turbot 

TNFα, ACN41911; Flounder TNFα, BAA94969.1; Pufferfish TNFα, NP_001033074.1; Trout TNFα1, 

CAB92316.1; Trout TNFα2, CAC16408.1; PBFT TNFα2, BAG72142.1; Ayu TNFα, DD019003; Channel 

catfish TNFα, NP_001187101.1; Zebrafish TNFα, NP_998024.2; Grass carp TNFα, ADY80577.1; Carp TNFα3, 

BAC77690.1; Carp TNFα1, CAC84641.2; Carp TNFα2, CAC84642.2; Common brushtail possum TNFα, 

AAB49506.1; Rat TNFα, AAR91624.1; Mouse TNFα, BAA19513.1; Guinea pig TNFα, AAB06492.1; Rabbit 

TNFα, NP_001075732.1; Human TNFα, NP_000585.2; Chimpanzee TNFα, BAE92774.1; Macaque TNFα, 

BAD69724.1; Wolf TNFα, AAB32391.1; Horse TNFα, AAA30959.1; Pig TNFα, NP_999187.1; Llama TNFα, 

BAC75383.1; Sheep TNFα, CAA39437.1; Red deer TNFα, AAA50759.1; Rough-toothed dolphin TNFα, 

ABC68490.1; Beluga whale TNFα, AAL56946.1; Human FasL, AAH17502.1.  

 

 

3.1.3. Identification of ABFT IL-1β complete cDNA and gDNA sequence 

The ABFT IL-1β cDNA consists of 1294 bp (GenBank ID: KF134540; Figure 3.7) containing a 177 

bp 5’ UTR, 459 bp 3’ UTR and a 724 bp ORF encoding a protein of 246 amino acids. The IL-1β 

3’UTR contains nine instability motifs (ATTTA), three endotoxin-responsive motifs (TTATTTAT) 

and one polyadenylation signal (AATAAA) 16 bp upstream of the polyA tail. Five instability motifs 

are also found within the introns. The ABFT IL-1β translation contains three potential N-glycosylation 

sites at positions 8-10, 132-134 and 203-205, respectively.   

The ABFT IL-1β gDNA sequence (GenBank ID: KF134539; Figure 3.7) is 2443 bp long and 

comprises four exons and four introns. The first exon contains 97 bp of 5’ UTR and the first 206 bp of 

the ORF, exons three and four contain 165 and 134 bp, respectively, of the ORF. Finally, exon five 

includes 219 bp of the ORF and the entire 3’ UTR region. The four introns contain 543, 225, 157 and 

224 nucleotides, respectively (Figure 3.8; Figure 3.9). After PCR amplification with primer pair 

bftIL1-gF/bftIL1-gR using liver and head kidney cDNA of “damaged” ABFT as template, two 

transcripts were revealed: a fully spliced RNA transcript (exons 1-4) and a transcript containing exons 

1-4 plus intron 1. 
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Figure 3.7. Full-length nucleotide (cDNA/gDNA) and deduced amino acid sequence of the ABFT IL-1β. Exon 

sequences are shown in upper case with 5’ and 3’ UTRs italicized and intron sequences are shown in lower case. 

Features shaded include the start and stop codons. RNA instability motifs (ATTTA) are shown in bold type, 

potential endotoxin-responsive motifs (TTATTTAT) are boxed and the polyadenylation signal (AATAAA) is 

indicated by double underlining. Potential N-glycosylation sites (positions 8-10, 132-134 and 203-205) are 

underlined. Intron splice sites are in bold and boxed.  
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Figure 3.8. Exon/intron size of ABFT IL-1β vs other known IL-1βs. The exon/intron sizes of the human and 

mouse IL-1β and selected fish species were obtained from NCBI Human Genome Resources 

(http://www.ncbi.nlm.nih.gov/genome/).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Gene organisation and exon/intron size of ABFT IL-1β vs other known IL-1β genes. Introns are 

indicated by the grey boxes, UTR’s by black boxes and ORF’s by white boxes. The intron sizes of the human 

and mouse IL-1β and selected fish species were obtained from NCBI Human Genome Resources 

(http://www.ncbi.nlm.nih.gov/genome/).  
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3.1.4. Analysis of ABFT IL-1β protein sequence 

Analysis of the ABFT IL-1β amino acid sequence (Figure 3.10) showed a good level of conservation 

in the predicted 12 β-sheets but the absence of an aspartic acid responsible for the cleavage of 

mammalian IL-1β, typical of non-mammalian IL-1β’s. The predicted protein revealed a sequence 

LMSARFPDWYISTAGQDNKPL with homology to the modified IL-1β family signature [FCL]-x-S-

[ASLV]-xx-[PRS]-xx-[FYLIV]-[LI]-[SCAT]-T-xxxxxxx-[LIVMK]. ABFT IL-1β shared the highest 

amino acid identity (96.3%) with its homologue in Southern bluefin tuna SBFT (Thunnus maccoyii), 

followed by lemonfish, trumpeter, mandarin fish, turbot, halibut and olive flounder IL-1β amino acid 

sequences, all with more than 60% identity (Table 3.2). Phylogenetic tree analysis reflected the amino 

acid homology (Figure 3.11) showing that ABFT IL-1β branches together with SBFT IL-1β inside a 

larger group consisting of other Perciformes and members of the Pleuronectiformes, separate from the 

Cypriniformes, but clearly a member of the fish type II IL-1β’s (Husain et al. 2012). 
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Figure 3.10. Multiple alignment of the predicted ABFT IL-1β amino acid sequence (shown in bold letters) with 

selected known vertebrate IL-1β molecules. Identical (*) and similar (: or .) residues identified using CLUSTAL 
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W (v1.60) are indicated. Areas of high conservation within the 12 β –sheets are indicated in bold, below the 

alignment. The IL-1β family signature is shaded. The mammalian ICE cut site crucial for full activation of the 

mature IL-1β peptide is indicated with (▲). Nine aa differences between Atlantic and Southern BFT IL-1β 

sequence are boxed. The EMBL accession numbers of the IL-1β genes are: SBFT AGH24759.1; Sea bass, 

CAC80553.1; Seabream, CAC81783.2; Turbot, CAC33867.2; Trout IL-1β1, CAA11684.1; Goldfish IL-1β1, 

CAC80551.1; Carp IL-1β1, BAA24538.1; Zebrafish, AAH98597.1; Mouse, AAA39276.1; Human, 

AAA59135.1. 

 

Table 3.2 Amino acid and nucleotide homology of ABFT IL-1β with human and selected fish IL-1β sequences. 
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Figure 3.11. Phylogenetic analysis of the ABFT IL-1β with other known vertebrate IL-1β molecules. The 

sequences were aligned using CLUSTALW and the tree was generated with MEGA 4 using the neighbour-

joining method. The branches were validated by bootstrap analysis from 2000 repetitions and are represented by 

numbers at the branch nodes. Human and Mouse IFN- were used as outgroups. The GenBank accession 
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numbers of the IL-1β sequences used in this study are as follows: Yellowfin seabream, AAV74185.1; Blackhead 

seabream, AFM93777.1; Gilthead seabream, CAC81783.2; Red seabream, AAP33156.1; European sea bass, 

CAC80553.1; Striped beakfish, ACH87392.1; Mandarin fish, AAV65041.1; Trumpeter, ACQ99510.1; Sea 

perch, ABP38359.1; Orange-spotted grouper, ABV02594.1; Roughskin sculpin, AFH88676.1; Southern BFT, 

AGH24759.1; Lemonfish, AAT65502.1; Turbot, CAC33867.2; Halibut, ACY54774.1; Olive flounder, 

BAB86882.1; Tonguefish, ACU55137.1; CCH6376.1; Salmon IL-1β1, NP_001117054.1; Trout IL-1β1, 

CAA11684.1; Salmon IL-1β2, AGKD01067865; Trout IL-1β2, CAB53541.3; Atlantic cod, CAD79352.2; 

Haddock, AJ550166.2; Salmon IL-1β3, CCH6376.1; Trout IL-1β3, AJ557021; Zebrafish, AAH98597.1; 

Goldfish IL-1β2, CAC80552; Common carp IL-1β1, BAA24538.1; Goldfish IL-1β1, CAC80551.1 Common 

carp IL-1β2-1, CAC19887.1; Common carp IL-1β2-2, CAC19888.1; Chicken, CAA75239.1; African clawed 

Frog, CAB53499; Common brushtail possum, AAD21871.1; Cow, AAA30585.1; Red deer, AAA62234.1; 

Sheep, CAA38566.1; Goat, BAA09675.1; Bottle-nosed dolphin, BAA87947.1; Pig, AAA02584.1; Horse, 

BAA07718.1; Cat, AAA30814.1; Mouse, AAA39276.1; Norway rat, AAA41426.1; Hispid cotton rat, 

AAL18817.1; Rabbit, BAA04863.1; Human, AAA59135.1; Red-crowned mangabey, AAA86704.1; Pig-tailed 

macaque, AAA86715.1; Crab-eating macaque, BAA09677; Rhesus monkey, AAA86709.1; Small spotted 

catshark, CAC80866.1; Leopard shark, AB074142.1; Human IFN-γ, 56786138; Mouse IFN-γ, 33468859. 

 

3.1.5. Homology modeling of ABFT TNFα1, TNFα2 and IL-1β 

In order to find a suitable template among different sequences in the protein databases, for structure 

prediction of the first 3D models of immune proteins in tuna, the ABFT TNFα1, TNFα2 and IL-1β 

amino acid sequences were analyzed using BLAST (Altschul et al. 1997) search implemented within 

the SWISS-MODEL Workspace (Arnold et al. 2006). The search identified 31 homologous sequences 

with significant similarity (E-value set at 1x107 and using the blosum62 matrix) with the ABFT 

TNFα1, 23 with TNFα2 and 20 with IL-1β. Sequences with more than 30% identity with ABFT 

sequences were considered as possible templates. All alignments were performed using ClustalW 

implemented in MEGA 5 (Tamura et al. 2011).  

Three-dimensional models were constructed using human templates identified as the most suitable: 

TNFα (PDB id: 1tnf, chain B) as template for ABFT TNFα1, TNFα (PDB id: 2zjc, chain B) as 

template for ABFT TNFα2, and IL-1β (PDB id: 1iob, chain A) as template for ABFT IL-1β. Structure 

assessments of all three models showed that more than 90% of residues, according to PROCHECK 

(Laskowski et al. 1993), lie within the allowed regions, with the majority of model parts built 

correctly, therefore with the overall model showing good structural quality.  

3.1.5.1. 3D models of ABFT TNFα1 and TNFα2 

All eight amino acids crucial for maintenance of the human TNFα conformation and two of eleven 

amino acids involved in receptor binding in human TNFα (Van Ostade et al. 1991; Zhang et al. 1992) 
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were conserved in both ABFT TNFα molecules (Figure 3.12). The predicted model of the ABFT 

TNFα1 and TNFα2 monomers form a ‘jelly roll’ sandwich composed mainly of β-strands, with an 

intra molecular disulphide bridge C150- C190 (TNFα1) and C143- C187 (TNFα2) stabilizing each 

monomer, and showing excellent compatibility with the human TNFα tertiary structures (Figure 3.13A 

and C). The quaternary structure of ABFT TNFα1 and TNFα2 trimers were obtained by superposing 

the predicted ABFT TNFα1/TNFα2 monomers onto each of the human trimer chains (Figure 3.13B 

and D). 

 

 

 

 

 

 

 

Figure 3.12. Alignment of ABFT TNFα1, TNFα2 and human TNFα protein sequences. Identical (*) and similar 

(: or .) residues identified using CLUSTAL W (v1.60) are indicated. Dashes represent gaps added to optimize 

alignment of the sequences. Amino acids important for maintenance of the human TNFα conformation and 

amino acids involved in receptor binding are in bold and colored in red and green, respectively. ABFT amino 

acids that correspond to those in the human are equally colored. 
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Figure 3.13. Homology modeling of ABFT TNFα1 and TNFα2. Modeling results represented as ribbon 

diagrams showing: (A, C) superposition of the predicted ABFT TNFα1 and TNFα2 monomers (shown in blue 

and red, respectively) with the human TNFα counterpart (shown in green), and arrows representing beta-strands; 

(B, D) predicted quaternary structure of ABFT TNFα1 and TNFα2 trimers, each chain represented by a different 

color and disulphide bridges shown as spheres. 

 

3.1.5.2. 3D model of ABFT IL-1β  

ABFT IL-1β showed 40% overall sequence identity with its human homologue (1iobA) but within the 

12 β-strands, identity was even higher (45%) (Figure 3.14) suggesting similar folding patterns and 

therefore similar tertiary structure (Figure 3.15). The predicted ABFT IL-1β, as the human IL-1β 

protein, exists as a monomer and forms a so-called β-trefoil structure. However, only one of seven 

residues important for binding of human IL-1β to its receptor (IL-1RI) (Labriola-Tompkins et al. 

1991) was conserved in ABFT IL-1β suggesting a diverse receptor-ligand binding pattern.   
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Figure 3.14. Alignment of ABFT and human IL-1β protein sequences. Identical (*) and similar (: or .) residues 

identified using CLUSTAL W (v1.60) are indicated. Dashes represent gaps added to optimize the alignment of 

the two sequences. Residues involved in human receptor binding are shown in yellow and the 12 β-sheets are 

indicated below the sequence. ABFT amino acids that correspond to those involved in human receptor binding 

are equally colored. 

 

 

 

 

 

 

 

 

 
Figure 3.15. Homology modeling of ABFT IL-1β. Modeling results represented as ribbon diagrams showing 

superposition of the predicted ABFT IL-1β monomer (shown in purple) with the human IL-1β counterpart 

(shown in green), with arrows representing beta-strands. 
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3.2. Analysis of ABFT TNFα1, TNFα2 and IL-1β expression profiles in vitro 

The expression of ABFT IL-1β, TNFα1, TNFα2 and reference gene β-actin was measured using real-

time PCR and target-specific primers bftIL1-rtF/rtR, bftTNF1-rtF/rtR, bftTNF2-rtF/rtR and bftβactin-

rtF/rtR (Table 2.2). Real-time PCR was carried out using SYBR green I (Thermo Fisher Scientific, 

USA) in a LightCycler 480 System (Roche Applied Science, UK).  

3.2.1. Expression of ABFT TNFα1, TNFα2 and IL-1β in PBL after stimulation with PAMPs 

Expressions of ABFT IL-1β, TNFα1 and TNFα2 were examined in PBL cells after Poly I:C and LPS 

stimulation for 1, 3, 5 and 12 h. Stimulation with Poly I:C did not significantly up-regulate TNFα1, 

exhibiting change under or equal 2-fold in all samples examined. The only significant difference in 

TNFα1 expression between stimulated and control samples, was registered after 5 h of LPS 

stimulation, showing a 3.4-fold induction. On the other hand, TNFα2 showed significant difference in 

expression between control samples and both Poly I:C and LPS-stimulated samples after 3 h and 5 h 

of incubation, having the highest fold induction (7.6-fold) after 5 h of LPS stimulation (Figure 3.16A 

and B).  

IL-1β was significantly up-regulated after Poly I:C stimulation from 1 h to 12 h as well as from 1 h to 

5 h after LPS stimulation (Figure 3.16A), exhibiting up to 32.4-fold induction at first hour of 

stimulation with Poly I:C. The highest fold induction after LPS stimulation (11.7-fold) was measured 

after 5 h of incubation. Induction of IL-1β was biologically significant in all samples examined 

(Figure 3.16B).  
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Figure 3.16. Expression of ABFT IL-1β, TNFα1 and TNFα2 expression in PBL after stimulation with PAMPs. 

The expression of ABFT IL-1β, TNFα1, TNFα2 and reference gene β-actin was measured using real-time PCR 

and target-specific primers bftIL1-rtF/rtR, bftTNF1-rtF/rtR, bftTNF2-rtF/rtR and bftβactin-rtF/rtR. A) Relative 

expression of ABFT IL-1β, TNFα1 and TNFα2 in PBLs after stimulation with 50 µg/ml of LPS and Poly I:C for 

1, 3, 5 and 12 h. The relative expression (arbitrary units) was calculated as the expression of the target gene 

divided by that of β-actin times 100,000. The results represent the average +SEM of three replicates. Significant 

change in expression between stimulated and time-matched control samples is shown above the bars as *p 

≤0.05; **p ≤ 0.01 and ***p ≤ 0.001; B) Fold change of transcript expression after stimulation of PBLs for 1, 3, 5 

and 12 h. The fold change was calculated as the average expression level of stimulated samples divided by that 

of the time-matched controls.  

 

3.2.2. Expression of ABFT TNFα1, TNFα2 and IL-1β in PBL after stimulation with parasite 

protein extracts (PE)  

Expression of ABFT cytokines was examined in PBL cells after stimulation with two different 

concentrations (1 µg/ml and 10 µg/ml) of Didymosulcus katsuwonicola and Pseudocycnus 

appendiculatus PE for 1, 3, 5 and 12 h, and both statistical and biological significances of cytokine 

induction were observed.  

TNFα1 was significantly down-regulated after treatment of PBL with 10 µg/ml of D. katsuwonicola 

PE from 1 h to 5 h (Figure 3.17A), while stimulation with 10 µg/ml of P. appendiculatus PE caused its 

significant up-regulation after 1 h and 12 h of incubation (Figure 3.18A). TNFα2 was up-regulated 
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from 3 h to 12 h of incubation with D. katsuwonicola PE at both concentrations (Figure 3.17A). 

Incubation with P. appendiculatus PE caused up-regulation of TNFα2 after 1 h, 5 h and 12 h but only 

when 10 µg/ml of PE was added (Figure 3.18A). 

IL-1β was significantly up-regulated compared to non-stimulated time-matched controls after 

treatment with 1 µg/ml of D. katsuwonicola PE from 3 h to 12 h (Figure 3.17A), while treatment with 

10 µg/ml of the same PE up-regulated IL-1β only after 3 h of incubation. Stimulation with P. 

appendiculatus PE caused significant up-regulation of IL-1β only after 12 h and when 10 µg/ml of PE 

was used (Figure 3.18A). 

After calculating fold changes, biologically significant induction of IL-1β was recorded after treatment 

with 1 µg/ml of D. katsuwonicola PE between 3 h and 5 h (Figure 3.17B) and after 12 h of incubation 

with 10 µg/ml of P. appendiculatus PE (Figure 3.18B). TNFα1 was significantly induced only after 1 

h of incubation with 10 µg/ml of P. appendiculatus PE (Figure 3.18B). TNFα2 was significantly 

induced after 3 h of incubation with 1 µg/ml and 10 µg/ml of D. katsuwonicola PE (Figure 3.17B) and 

1 h and 12 h after treatment with 10 µg/ml of P. appendiculatus PE (Figure 3.18B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. Modulation of ABFT IL-1β, TNFα1 and TNFα2 expression in PBL after stimulation with D. 

katsuwonicola PE. The expression of ABFT IL-1β, TNFα1, TNFα2 and reference gene β-actin was measured 
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using real-time PCR and target-specific primers bftIL1-rtF/rtR, bftTNF1-rtF/rtR, bftTNF2-rtF/rtR and bftβactin-

rtF/rtR. A) Relative expression of ABFT IL-1β, TNFα1 and TNFα2 in PBLs after stimulation with 1 µg/ml and 

10 µg/ml of D. katsuwonicola PE for 1, 3, 5 and 12 h. The relative expression (arbitrary units) was calculated as 

the expression of the target gene divided by that of β-actin times 100,000. The results represent the average 

+SEM of three replicates. Significant change in expression between stimulated and time-matched control 

samples is shown above the bars as *p ≤0.05 and **p ≤ 0.01; B) Fold change of transcript expression after 

stimulation of PBLs for 1, 3, 5 and 12 h. The fold change was calculated as the average expression level of 

stimulated samples divided by that of the time-matched controls. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Modulation of ABFT IL-1β, TNFα1 and TNFα2 expression in PBL after stimulation with P. 

appendiculatus PE. The expression of ABFT IL-1β, TNFα1, TNFα2 and reference gene β-actin was measured 

using real-time PCR and target-specific primers bftIL1-rtF/rtR, bftTNF1-rtF/rtR, bftTNF2-rtF/rtR and bftβactin-

rtF/rtR. A) Relative expression of ABFT IL-1β, TNFα1 and TNFα2 in PBLs after stimulation with 1 µg/ml and 

10 µg/ml of P. appendiculatus PE for 1, 3, 5 and 12 h. The relative expression (arbitrary units) was calculated as 

the expression of the target gene divided by that of β-actin times 100,000. The results represent the average 

+SEM of three replicates. Significant change in expression between stimulated and time-matched control 

samples is shown above the bars as *p ≤0.05 and **p ≤ 0.01; B) Fold change of transcript expression after 

stimulation of PBLs for 1, 3, 5 and 12 h. The fold change was calculated as the average expression level of 

stimulated samples divided by that of the time-matched controls.  
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3.3. Analysis of ABFT TNFα1, TNFα2 and IL-1β expression profiles in vivo 

3.3.1. ABFT cytokine expression in newly caught, damaged and farm-acclimated fish 

Initially, a partial ABFT β-actin sequence was determined (GenBank ID: JF271923) to allow the 

design of primers to measure real-time expression of this housekeeping gene in this species. The 

expression levels of ABFT β-actin, TNFα1, TNFα2 and IL-1β were measured using real-time PCR in 

head kidney and liver tissue taken from newly caught ABFT, damaged juvenile ABFT and farm-

acclimated ABFT at harvest. Using the β-actin gene as a reference, the results showed that all three 

cytokines were constitutively expressed to some degree in all samples examined, with no significant 

differences in expression levels of TNFα1 and TNFα2 between the liver and head kidney (p = 0.308 

and p = 0.15, respectively) (Figure 3.19A and B). However, expression of IL-1β was found to be 

significantly higher in liver tissue compared to head kidney (p = 0.029) (Figure 3.19C). The putative 

influence of ABFT health condition on the expression level of three cytokines was further investigated 

in both liver and head kidney tissue. Damaged fish with wounds showed significantly higher levels of 

TNFα1 expression in liver tissue compared to newly caught fish (approximately 6 times greater; p = 

0.007) and farm-acclimated fish at harvest (approximately 8 times greater; p = 0.037) (Figure 3.20A). 

TNFα2 and IL-1β expression was also significantly higher in liver tissue of damaged fish compared to 

newly caught fish, where the expression of TNFα2 was approximately 2.5 greater (p = 0.034) and the 

expression of IL-1β was approximately 10 greater (p = 0.003). However, when compared to 

expression levels of farm acclimated fish, no significant differences were found (Figure 3.20B and C). 

In head kidney tissue no significant differences in the expression of all three cytokines were found 

between all three groups of tuna. 
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Figure 3.19. ABFT TNFα1 (A), TNFα2 (B) and IL-1β (C) expression in liver and head kidney. Gene expression 

was measured using real-time PCR and normalized against ABFT β-actin. Target-specific primers used are 

bftIL1-rtF/rtR, bftTNF1-rtF/rtR, bftTNF2-rtF/rtR and bftβactin-rtF/rtR. Data are presented as means±SD of 5-8 

fish per group. The asterisk indicates a significant difference (p<0.05) in expression of IL-1β between the two 

tissues.  

 

 

 

 

 

 

 
Figure 3.20. Expression analysis of TNFα1, TNFα2 and IL-1β in different groups of cage-reared ABFT. TNFα1 

(A), TNFα2 (B) and IL-1β (C) expression in liver and head kidney of a newly caught, damaged and farm 

acclimated tuna, normalized against ABFT β-actin. Data are presented as means ± SD of 5-10 fish per group. 

Asterisks indicate significant differences (p<0.05) in expression relative to damaged fish.  

 

3.3.2. ABFT TNFα1, TNFα2 and IL-1β expression in infected and uninfected gills 

P. appendiculatus-infected gills showed significantly higher expression of IL-1β compared to 

uninfected gills, while D. katsuwonicola-infected gills showed significantly higher expression of 

TNFα2. TNFα1 showed no significant difference in expression between gills infected either with P. 

appendiculatus or D. katsuwonicola and uninfected gills (Figure 3.21A and B). TNFα1 and TNFα2 
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showed significant difference in expression between two groups of infected gills; in P. 

appendiculatus-infected gills (Figure 3.21A) TNFα1 and TNFα2 expression was 59% and 31%, 

respectively, of that in gills parasitized by D. katsuwonicola (Figure 3.21C). In contrast, no significant 

difference was found in IL-1β expression between two groups of infected gills (Figure 3.21C).  

 

 

 

 

 

 

 
 

Figure 3.21. Induction of cytokines in the course of parasite gill infection of ABFT. A) Relative expression of 

ABFT IL-1β, TNFα1 and TNFα2 in gill infected with Didymosulcus katsuwonicola (Didymozoidae, Digenea) 

and Pseudocycnus appendiculatus (Pseudocycnidae, Copepoda). The relative expression (arbitrary units) was 

calculated as the expression of the target gene divided by that of β-actin times 100,000. Data are presented as 

average +SEM of 7 fish per group. Significant induction relative to non-infected individuals is shown above the 

bars as *p ≤0.05 and **p ≤ 0.01; B) Fold change of transcript expression between parasite-infected and 

uninfected gills calculated as the average expression level of infected samples divided by that of uninfected 

samples; C) Ratio of expression levels of ABFT IL-1β, TNFα1 and TNFα2 between D. katsuwonicola- and P. 

appendiculatus-infected gills. **Indicates that difference in expression levels of selected genes between gills of 

two parasitized groups is significantly different with **p ≤ 0.01. 

 

 

3.4. Pathohistology of parasite-infected gill filaments of ABFT 

3.4.1. Pathohistology of gills infected with digenean Didymosulcus katsuwonicola 

Didymozoid cysts, overlaid by gill epithelial layer (Figure 3.22A), clustered two individuals just 

above a large afferent filament artery (Figure 3.22A, upper insert). Its tunica adventitia composed 

mainly of collagen fibres merged with connective capsule surrounding parasites, while tunica intima 

had granulated cells on its surface (Figure 3.22A, upper insert). In vicinity of cysts, small afferent 

lamellar arterioles and a peripheral nerve with myelinated and non-myelinated axons were observed 
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(Figure 3.22A, lower insert). Didymozoid cysts consisted of a connective tissue capsule of collagen 

fibres of varying thickness, being more pronounced proximal to the attachment site compared to the 

periphery. Connective tissue capsule encapsulated both the afferent filament artery and lateral afferent 

lamellar arterioles. Bundles of loose collagen fibres were interspersed by fibroblasts and fibrocytes, 

and encompassed numerous small anastomosing capillaries (Figure 3.22B). Didymozoid hind body’s 

cuticle was in direct contact with connective tissue capsule, leaving no intercystic space between 

digenean and the host’s capsule. A thin basement membrane distally overlaid connective tissue 

capsule and supported stratified squamous epithelium (Figure 3.22B). This epithelium was 

approximately 10 strata thick in the part proximal to the tuna filament and abundant with mast cells 

and eosinophils that migrated also into the host’s connective capsule (Figure 3.22C). Several rodlet 

cells appeared in subepithelial area as well. On the contrary, peripheral part of the didymozoid cyst 

was overlaid with approximately 5 strata of epithelial cells, abundant in mucous goblet cells (Figure 

3.22D).  

3.4.2. Pathohistology of gills infected with copepod Pseudocycnus appendiculatus 

Copepod attached proximally at the filament base by a sclerotized claw of second antennae, deeply 

embedded into gills epithelium (Figure 3.23A). Tissues adjacent to the parasitation site were 

fragmented, showing haemorrhages and strong proliferation of mucous and rodlet cells (Figure 

3.23B). In contrast to didymozoid tissue reaction, only few mast cells and eosinophils were observed 

(Figure 3.23C). Tissue mass proximal and in between the two antennae claws consisted of multi-

layered squamous epithelium, lacking the above mentioned cell types (Figure 3.23D). In some 

instances, basement membrane was thick and disrupted. Distally from the attachment site, and 

medially to the claws' grip, cells embedded in connective tissue underwent necrotic/apoptotic changes. 

A demarcation between apparently unchanged epithelial cells and cell undergoing death process was 

observed as an accumulation of dark proteinaceous matrix (Figure 3.23E). Necrotic/apoptotic cells 

were dark-stained, with nuclei undergoing karyolysis, karyopyknosis and karyorrhexis (Figure 3.23F). 

No particular parasite encapsulation or lymphocytic infiltration was observed.   
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Figure 3.22. Pathohistological semithin section (0.5 µm) of ABFT gill filament infected with Didymosulcus 

katsuwonicola (Didymozoidae, Digenea) (1% toluidine blue). A) Didymozoid cyst with two individuals (d), 

situated proximally under the squamous epithelium (e) of gill filament (f) and close to lamellae (l), is surrounded 

by a connective tissue capsule (c) (scale bar=1 mm). Dashed arrow points to the upper insert where afferent 

filament artery, situated below the cysts, shows different blood cells (bc) in the lumen, and small granulated cells 

(*) attached to its tunica intima (scale bar=25 µm). Full-line arrow points to the lower insert, showing a 

peripheral filament nerve abundant with (non)myelinated axons, situated below the afferent filament artery and 

connective tissue capsule (c) (scale bar= 100 µm); B) Connective tissue capsule (c) lays in close contact to the 

didymozoid hind body (d) and is interspersed by anastomosing capillaries filled with blood cells (bc). Note a thin 
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basement membrane (arrowhead) supporting filament squamous epithelium (e) abundant with mast cells and 

eosinophils (m) (scale bar=10 µm); C) Strong epithelial infiltration of mast cells and eosinophils (m) is depicted 

above connective tissue capsule (c) overlaying didymozoid hind body (d). Note loose appearance of the capsule 

(c) abundant with cellular elements and relatively thin connective fibres (reddish) (scale bar=10 µm); D) Distal 

part of the connective tissue capsule (c) shows a thin basement membrane (arrowhead), overlaid by squamous 

epithelium (e) where rodlet cells (r) and large, active mucous goblet cells (g) are present. On right, note mast 

cells in different stages of degranulation (m) (scale bar=10 µm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.23. Pathohistological semithin section (0.5 µm) of ABFT gill filament infected with Pseudocycnus 

appendiculatus (Pseudocycnidae, Copepoda) (1% toluidine blue). A) Claws of copepod second antennae (p) are 

attached to the gill squamous epithelium (e) and connective tissue (c) of the filament (f), distally of lamellae (l). 

Note blood cells (bc) proximal to the attachment site (scale bar=1 mm); B) Gill epithelium (e) proximal to 
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copepod attachment site shows fragmentation of the tissue (*), secretion of mucous goblet cells (g) and 

haemorrhaging (bc) (scale bar=100 µm); C) A detail of the infected epithelium (e) evidencing considerable 

number of mucous goblet (g) and rodlet cells (r), with few mast cells and eosinophils (m). Note in the left and 

right upper corner, sclerotized copepod claw (p) (scale bar=10 µm); D) At the parasitation site (p) beneath gill 

epithelium (e), connective tissue (c) was interspersed with high number of necrotic/apoptotic cells (na) (scale 

bar=100 µm); E) Demarcation area between apparently unchanged epithelial cells (e) and cells undergoing 

necrosis/ apoptosis (na) in the connective tissue (c) was observed (scale bar=10 µm); F) Area of connective 

tissue (c) was marked by extensive number of necrotic/ apoptotic cells (na) (scale bar=10 µm). 
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4. Discussion 

4.1. Characterization of Atlantic bluefin tuna pro-inflammatory cytokines 

4.1.1. Atlantic bluefin tuna TNFα1 and TNFα2 sequences 

The size of ABFT TNFα1 (247 bp) and TNFα2 (245 bp) amino acid sequences is congruent with the 

average size of known fish TNFα’s, which is 242 amino acids (Frederick et al. 2004). It also showed 

relatively high homology with other known TNFα’s with the highest sequence identity with PBFT 

TNFα (Table 3.1) being expected since these are closely related species belonging to a single 

subgenus, although geographically separated in the North Pacific and the North Atlantic (Block and 

Stevens 2001). Thus, ABFT TNFα2 was identical to its homologue in PBFT (Kadowaki et al. 2009), 

whereas TNFα1 differed in a single amino acid (Proline P29 instead of Alanine). 

Interestingly, while the ABFT TNFα1 mRNA sequence was of the same length as its homologue in 

PBFT (Kadowaki et al. 2009), TNFα2 mRNA was 60 bases shorter than PBFT TNFα2 transcript due 

to the employment of an alternative polyadenylation signal resulting in shortening of the 3'UTR. 

Cleavage in the 3’UTR at alternative polyadenylation site can give raise to transcripts with the same 

coding region and thus production of the same protein, but also various 3’UTR lengths. The resulting 

variation of regulatory element composition or in some cases, their removal in the 3’UTR can change 

downstream transcript regulation, stability, and even gene expression patterns (Di Giammartino et al. 

2011; Gupta et al. 2014; Dickson and Wilusz 2010). Interestingly, ABFT TNFα2 3’UTR does not 

contain AU-rich elements or endotoxin-responsive elements otherwise typical for genes with transient 

expression, like cytokines. These elements represent major determinants of RNA stability and are 

involved in the regulation of transcription during cell growth and differentiation as well as during 

immune response (Caput et al. 1986; Sachs 1993; Roca et al. 2007). The same was noticed in PBFT 

TNFα2, implying rather unique situation when compared to other teleost TNFα2 mRNAs, like salmon 

with 6 (Haugland et al. 2007), trout with 8 (Zou et al. 2002) and carp with 3 (Saeij et al. 2003) 

instability motifs within their TNFα2 3’UTR. Instability motifs are conserved in both mammalian and 

fish TNFα (Hel et al. 1998; Hirono et al. 2000; Laing et al. 2001; Garcia-Castillo et al. 2002; Cai et 

al. 2003; Saeij et al. 2003; Zou et al. 2003a) emphasizing the possibility of similar translation 
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regulation within all vertebrates. Both TNFα genes have the intron splicing consensus (GT/AG) 

conserved at the 5′ and 3′ ends of the introns. The gene organization of 4 exons and 3 introns is found 

in all known vertebrate TNFα molecules determined so far (Figure 3.3; Figure 3.3). 

Alignment with selected vertebrate TNFα sequences (Figure 3.5) showed that two ABFT TNFα 

molecules contained a TNF family signature composed of 14 amino acids highly conserved in all 

known TNF family members that is located within β-strands in the central part of the protein (Ware et 

al. 1998). This indicates that both mature peptides have a structure adequate to initiate receptor-

mediated apoptosis signalling (Lam et al. 2001). Substitution of Leucine (L) at position 1 with 

Isoleucine (I), Valine (V) at position 3 with Isoleucine (I) and Leucine (L) at position 10 with 

Phenylalanine (F), seen within the both ABFT TNFα1 and TNFα2 is consistent with amino acid 

differences found so far between fish and mammalian TNFα sequences (Frederick et al. 2004). 

Furthermore, two cysteine residues responsible for correct folding of the mature TNFα in mammals 

(Rink and Kirchner 1996) are also conserved in ABFT TNFα1 (C150 and C190), TNFα2 (C143 and C187) 

and other vertebrate TNFα sequences implying that the formation of a disulphide bond within the 

TNFα monomer is of great importance. A putative TACE restriction site ([TS]/[LV][KR]) crucial for 

the release of the mature peptide of both mammals and fish (Hirono et al. 2000; Laing et al. 2001; 

Garcia-Castillo et al. 2002; McGeehan et al. 1994) was also conserved in both ABFT TNFα genes.  

ABFT TNFα1 and TNFα2 shared only 39% of amino acid identity, similar to that reported in PBFT, 

but much lower when compared to two TNFα species in trout (Laing et al. 2001) and carp (Saeij et al. 

2003) that share 88.2% and 81% amino acid identity, respectively. It suggests that these ABFT TNFα1 

and TNFα2 have distinct phylogenetic separation and physiological roles. This was well reflected on 

phylogenetic tree where ABFT TNFα1 and TNFα2 did not branch together in contrast to those in trout 

and carp. Furthermore, ABFT TNFα1 clustered in the same clade as other members of Perciformes 

away from younger Cypriniformes and Siluriformes clades, while ABFT TNFα2 was closer to both 

Cypriniformes and Siluriformes (Figure 3.6).  
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4.1.2. Atlantic bluefin tuna IL-1β sequence 

The predicted ABFT IL-1β amino acid sequence showed the highest identity with SBFT IL-1β (Table 

3.2) with the total of nine different amino acids (Figure 3.10). Interestingly, instability motifs 

(ATTTA) were found in the ABFT 3’UTR and in all introns, except intron 3. Since the same pattern 

was seen in trout IL-1β, there is a possibility that these intron instability motifs influence or have a 

role in regulating splicing of pre-RNA as well as mRNA expression (Zou et al. 1999a). Furthermore, 

gene organization analysis revealed that the ABFT IL-1β gene contains only four introns, in contrast 

to trout with five introns, and carp and mammals with six introns (Figure 3.9). As reported in tilapia 

(Lee et al. 2006), sea bream (Pelegrin et al. 2001), rainbow trout (Zou et al. 1999a), sea bass 

(Buonocore et al. 2003), common carp (Engelsma et al. 2001) and human (Dinarello 2003), ABFT IL-

1β has an intron within the 5’ UTR and therefore exon 1 is untranslated, unlike in chicken and 

catshark with fully translated exon 1 (Dinarello 1997). The size of ABFT IL-1β intron 1 was larger 

than in other fish and human genes, while the remaining introns were typically much shorter than in 

mammals, resulting in a smaller gene. Within mRNA derived from damaged ABFT liver and head 

kidney, a second transcript was detected containing exons 1-4 plus intron 1. Incomplete splicing is 

often reported in IL-1β genes, as seen in trout where two variants occur: one that retains intron 5 and 

another with introns 4 and 5 (Zou et al. 1999a). Retention of introns in IL-1β transcripts is also 

reported in carp (Engelsma et al. 2001) and sea bass (Buonocore et al. 2003). However, it is rather 

unlikely that these transcript variants have any biological activity (Scapigliati et al. 2004; Peddie et al. 

2001). 

When aligned with other selected vertebrate IL-1β mRNAs, ABFT sequence showed the highest 

homology to others along the predicted secondary structured regions consisting of 12 β-sheets (Figure 

3.10). IL-1β family signature, which was previously modified from conventional family signature in 

order to include haddock (Corripio-Miyar et al. 2007), sea bass (Buonocore et al. 2003) and trout (Zou 

et al. 1999a), was also found within β-sheets (9-11). After sequence analysis by SignalP version 3.0 

and using Kyte and Doolittle plots, it was clear that ABFT IL-1β does not have a signal peptide. In 

mammalian species proteolytical cleavage of pro-IL-1β by IL-1β converting enzyme (ICE) is 
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necessary for full activation of mature IL-1β peptide. However, ABFT like other non-mammalian 

species (Carretti et al. 1992; Weining et al. 1998; Zou et al. 1999b; Fujiki et al. 2000; Hong et al. 

2001; Pelegrin et al. 2001; Scapigliati et al. 2001; Bird et al. 2002b; Wang et al. 2004; Lee et al. 2006; 

Wang et al. 2006; Corripio-Miyar et al. 2007; Jiang et al. 2008; Lu et al. 2008), has no aspartic acid 

residue, crucial for recognition of ICE. With no ICE cut site present, the cleavage of pro-IL-1β in non-

mammalian vertebrates occurs through specific enzyme actions (Irmler et al. 1995). Possible cut site 

has been predicted in chicken (Kaiser et al. 2001), carp (Hong et al. 2001), trout (Carretti et al. 1992; 

Zou et al. 1999b) and sea bass (Scapigliati et al. 2001), where recombinant protein was synthesized 

and active, although the mechanism of how this pro-peptide is processed remained unclear. Recently, 

teleost fish inflammatory caspases were identified in zebrafish and shown to cleave pro-IL-1β 

(Vojtech et al. 2012). 

ABFT IL-1β showed the highest identity with lemonfish (67%), closely followed by trumpeter, 

mandarin fish and flounder (Table 3.2). These relationships were evident within the phylogenetic tree 

analysis where ABFT IL-1β formed a group with the rest of Perciformes and Pleuronectiformes 

farther away from the evolutionary younger Cypriniformes clade (Figure 3.11). 

4.1.3. Homology modeling of Atlantic bluefin tuna TNFα1, TNFα2 and IL-1β 

ABFT TNFα1 and TNFα2 showed good compatibility with the human TNFα tertiary structure due to 

the conservation of residues and motifs crucial for secondary and tertiary structures (Figure 3.12). 

These conserved residues included all eight amino acids important for the maintenance of the TNFα 

conformation, as it was observed within human TNFα (Van Ostade et al. 1991; Zhang et al. 1992) and 

more recently within sea bass TNFα (Nascimento et al. 2007). On the other hand, the amino acids 

which are important for receptor-ligand binding in human TNFα (Van Ostade et al. 1991; Zhang et al. 

1992) are poorly conserved within ABFT TNFα molecules, indicating that this protein may share the 

same tertiary structure as the mammalian protein but that it has different receptor-ligand binding 

mechanisms. 
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Analysis of the human IL-1 (PDB id: 1iobA) protein model did not reveal any specific interactions 

that could result in the formation of stable quaternary structures (Shaanan et al. 1992). Likewise, the 

predicted model of ABFT IL-1β suggests it does not form a complex in solution. Like other members 

of the IL-family, it forms a β−trefoil fold characterized by 12 β-strands; six strands forming a tapered 

β-barrel, which is closed at the wide end by another six strands (Murzin et al. 1992). Although ABFT 

IL-1β has similar tertiary structure with its human homologue, it probably binds differently to its 

receptor (IL-1R1), sharing only one of seven residues essential for that interaction (Figure 3.14).  

4.2. Expression of Atlantic bluefin tuna IL-1β, TNFα1 and TNFα2 in vitro 

It is known that the expression of many teleost TNFα and IL-1β can be induced in PBLs by PAMPs 

LPS and Poly I:C (Zou et al. 2000; Engelsma et al. 2001; Scapigliati et al. 2001; Bird et al. 2002b; 

Zou et al. 2002; Saeij et al. 2003; Lee et al. 2006; Haugland et al. 2007; Lu et al. 2008; Kadowaki et 

al. 2009; Polinski et al. 2013). Therefore, the expression of ABFT IL-1β, TNFα1 and TNFα2 was 

examined in PBLs using the same stimulants. In addition, expression levels of three cytokines were 

also quantified during in vitro stimulation of PBLs with Pseudocycnus appendiculatus and 

Didymosulcus katsuwonicola protein extracts. 

4.2.1. Expression of ABFT TNFα1 and TNFα2 in LPS and Poly I:C-stimulated PBL 

Both TNFα1 and TNFα2 were constitutively expressed in control PBL cells reaching the highest 

induction 5 h after stimulation. However, two TNFα genes exhibited differences in their respective 

expression patterns (Figure 3.16). Whereas TNFα1 showed no significant differences between control 

cells and LPS/Poly I:C stimulated cells, except after LPS stimulation after 5 h, ABFT TNFα2 showed 

significant up-regulation after 3 and 5 h post-LPS and Poly I:C stimulation. Majority of studies 

evidenced different expression of those two TNFα genes indicating that TNFα2 had stronger post-

stimulation expression than TNFα1, as in the case of LPS stimulation of salmon head kidney 

leukocyte cells (Haugland et al. 2007), trout macrophages (Zou et al. 2002), carp head kidney 

phagocytes (Engelsma et al. 2001) or PBFT PBL (Kadowaki et al. 2009). Authors speculated that 

different expression of two TNFα genes is a result of different number of instability motifs, like in 

trout (Zou et al. 2002), or polymorphisms in 3’ UTR, like in carp (Engelsma et al. 2001), influencing 
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TNFα mRNA half-life and translation efficiency. This could explain different expression of ABFT 

TNFα2 with no instability motifs and TNFα1 with seven. On the other hand, differential expression 

between TNFα1 and TNFα2 in salmon is probably caused by other mechanisms considering that two 

genes do not differ in number of instability motifs. These diverse findings are probably a consequence 

of different experimental designs, tissues or cells examined, duration of stimulation or infection, type 

of expression analysis as well as mechanisms influencing mRNA.  

4.2.2. Expression of ABFT IL-1β in LPS and Poly I:C-stimulated PBL 

No constitutive expression of IL-1β was observed 1 h after LPS and Poly I:C stimulation, as 

previously reported (Corripio-Miyar et al. 2007), confirming its stimulant dependency in tuna PBL. 

Low up-regulation, however, was observed after 3 h in control non-stimulated cells that increased and 

maintained constant level untill 12 h. The similar pattern, potentially related to isolation procedure and 

cell adaptation to culture plates, was already reported in non-stimulated rainbow trout (Brubacher et 

al. 2000), tilapia (Lee et al. 2006) and mammalian (Dinarello et al. 2003) cells. In both LPS and Poly 

I:C-stimulated cells, statistically significant up-regulation of IL-1β was observed during the whole 

experimental period, except for LPS-stimulated cells at 12 h (Figure 3.16A). Such pattern was 

previously confirmed in LPS and Poly I:C-stimulated orange-spotted grouper PBL (Lu et al. 2008), 

LPS-stimulated carp head kidney phagocytes (Engelsma et al. 2001), trout head kidney leukocytes 

(Zou et al. 2000), sea bass blood, head-kidney, spleen, gills and liver leukocytes (Scapigliati et al. 

2001), Nile tilapia head kidney cells (Lee et al. 2006), SBFT kidney homogenates and PBL (Polinski 

et al. 2013) and LPS-stimulated Atlantic cod adherent head kidney cells. The latter in contrast failed to 

respond to Poly I:C stimulation (Seppola et al. 2008). 

The highest induction of IL-1β occurred at 5 h post-LPS stimulation, while stimulation by Poly I:C 

inducted IL-1β already at 1 h, although the magnitude of expression was the highest at 5 h post-

stimulation (Figure 3.16B). The reason for the latter lower fold change during incubation could be 

attributed to the increased basal expression of IL-1β in control cells after 3 h.  
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4.2.3. Expression of ABFT IL-1β, TNFα1 and TNFα2 in parasite PE-stimulated PBL 

There are only few in vitro studies of influence of parasite antigens on immunity-related genes in 

teleost fish. Franke et al. (2014) examined leukocyte response of three-spined sticklebacks 

(Gasterosteus aculeatus) to helminth parasite antigens by analysing a number of viable cells and 

granulocyte to lymphocyte ratio and by comparing different parasite species across different host 

populations. Additionally, other authors (Hoole and Arme 1988; Taylor and Hoole 1993; Jones et al. 

1995) performed in vitro leukocytes assays with parasite-derived substances demonstrating 

immunosuppressive influence of different endoparasites belonging to classes Cestoda, Trematoda and 

Kinetoplastida, respectively. However, those studies did not assess possible effects of parasitic 

substances on induction or suppression of genes related to innate immune defense mechanisms. 

Expression analysis of pro-inflammatory cytokines in response to in vitro stimulation of PBLs with 

parasite protein extracts presented in this study, are therefore the first in teleost fish. Treatment with 

adult D. katsuwonicola PE induced dose-depended up-regulation of IL-1β (after 3 h to 5 h) and 

TNFα2 (after 3 h) (Figure 3.17), while adult P. appendiculatus PE induced all three cytokines; IL-1β 

(after 12 h), TNFα1 (after 1 h) and TNFα2 (after 1 h and 12 h) (Figure 3.18). While 1 µg/ml of P. 

appendiculatus PE failed to elicit biologically significant induction, 10 µg/ml of the same PE resulted 

in significant induction of all three cytokines. Treatments with 1 µg/ml and 10 µg/ml of D. 

katsuwonicola PE both led to significant induction of TNFα2, but higher fold change was recorded 

when using higher concentration. In contrast, significant induction of IL-1β was present only when 1 

µg/ml of D. katsuwonicola PE was added, congruent to in vivo expression pattern in Didymosulcus-

infected gills, where TNFα2 was dominant. Noteworthy is that during all treatments fold change in 

parasite PE-stimulated cells was relatively low (2.7 approximately) compared to LPS or Poly I:C 

treatments, especially in the case of IL-1β. If we consider such immune response as being relatively 

mild, our findings support the assumption that parasite adaptive mechanisms efficiently enable its 

survival within the host. Similar was recently observed by Reyes-Becerril et al. (2017) in yellowtail 

amberjack, Seriola lalandi. Study showed that expression of S. lalandi pro-inflammatory cytokines IL-

1β and TNFα is induced by antigens derived from adult monogenean parasite Neobenedenia melleni. 

Contrary, antigens from larval stage of N. melleni failed to evoke cytokine response. Authors 
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suggested that different level of antigenicity between two developmental stages of N. melleni arise 

from parasites ability to adjust antigenic activity as a part of their adaptation strategy. Thus, N. melleni 

larvae modify their surface antigens to avoid host immune response, whereas adults benefit from it. 

Namely, adult N. melleni reproductive activities require large amount of food derived from host skin 

mucus and plasma protein leakage (Reyes-Becerril et al. 2017) which is, in turn, induced by pro-

inflamatory cytokines such as IL-1 and TNFα (Buchmann 1999).  

4.3. Expression of Atlantic bluefin tuna TNFα1, TNFα2 and IL-1β in vivo 

Expression of TNFα1, TNFα2 and IL-1β and their importance as potential biomarkers for cage-reared 

ABFT was evaluated among three groups of ABFT: 1) newly caught fish, 2) farm-acclimated fish and 

3) damaged fish. The first two groups were apparently healthy tuna, while the latter group exhibited 

wounds and lesions in different parts of their body, suggesting entrapment in the cage net or abrasions 

from fast swimming in high density. They also showed behavioral changes such as slower and 

unbalanced swimming, disorientation and lack of appetite, suggesting their shift in health status 

towards a disease. Expression of three cytokines was also evaluated during natural gill infection with 

Pseudocycnus appendiculatus and Didymosulcus katsuwonicola. 

4.3.1. Expression of ABFT TNFα1 and TNFα2 during critical points of the farming process 

This study has confirmed that ABFT, like PBFT (Kadowaki et al. 2009), carp (Saeij et al. 2003), trout 

(Zou et al. 2002), and salmon (Haugland et al. 2007) expresses at least two TNFα genes. In contrast, 

Southern blot analysis revealed the presence of only one TNFα copy in Japanese flounder (Hirono et 

al. 2000). ABFT TNFα1 and TNFα2 mRNAs are both constitutively expressed in liver and head 

kidney tissue of healthy tuna. No significant difference in expression of two TNFα genes was found, 

although a trend for a higher expression in liver tissue was noticeable for both (Figure 3.19A and B). 

Also, expression levels of both genes had approximately the same magnitude in liver and head kidney 

tissue, indicating equivalent expression patterns of TNFα1 and TNFα2 in ABFT, as it was reported in 

sea bream (Garcia-Castillo et al. 2002). On the other hand, Kadowaki et al. (2009) suggested that in 

PBFT, TNFα1 and TNFα2 are regulated independently, although such up-regulation of TNFα2 was 
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observed in blood, while liver and head kidney did not show different expression levels of the TNFα 

genes.  

ABFT TNFα1 showed a significantly higher expression level in liver of damaged tuna compared to 

both newly caught and farm-acclimated fish, whereas TNFα2 expression in damaged fish was 

significantly higher only in comparison to newly caught fish. However, it must be emphasized that 

expression of TNFα2 in farm-acclimated group showed large individual differences which could have 

been the reason for no significant difference of TNFα2 expression levels between this group and the 

damaged one (Figure 3.20A and B). On the other hand, TNFα genes were not induced in head kidney 

tissue of any group of fish. Previous studies have also reported different expression patterns between 

different TNFα isoforms, like in trout (Zou et al. 2002; Sigh et al. 2004) and the Atlantic salmon (Zou 

et al. 2007). Furthermore, the magnitude of TNFα1 expression was higher than that of TNFα2 in all 

three groups of ABFT. This finding contrasts principal expression profile of two TNFα genes. 

Namely, TNFα1 is shown to have rather strong constitutive expression in different tissues of healthy 

fish but relatively poor up-regulation by immune challenge (Reyes-Cerpa et al. 2012), unlike the 

TNFα2 whose post-stimulation induction is usually fast and strong (Zou et al. 2002; Kadowaki et al. 

2009). However, there are few studies in vivo that have shown interesting reports of shift in expression 

levels between TNFα2 and TNFα1, from early to late phase of infection. For example, in salmon 

vaccinated with oil-based adjuvant, TNFα2 is more dominant for the first few days after the 

vaccination (with a peak in day 2), but its expression levels decline to day 8 followed by an increase of 

TNFα1 expression after day 10, leading to total domination of TNFα1 over TNFα2 (Haugland et al. 

2007). Similarly, in trout Ichtyophthirius multifilis-infected head kidney TNFα1 showed increasing 

transcriptional level from 48 h to 26 days post-infection, while TNFα2 were lower or equal to non-

infected fish levels (Sigh et al. 2004). Authors speculated that transcriptional level shift from TNFα2 

to TNFα1 was a consequence of organ-specific up-regulation and later activation of numerous immune 

cells. Likewise, damaged ABFT suffered infections and/or injuries for an extended period of time, 

which could have been the reason for stronger expression of TNFα1 compared to that of TNFα2. 

Therefore, the abundance of melano-macrophage centers (MMC), natural killer (NK) cells and natural 
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killer T (NKT) cells in liver could be an explanation for the increased cytokine gene expression, since 

liver can produce acute phase proteins and pro-inflammatory cytokines, as recognized in mammals 

(González-Amaro et al. 1994; Li and Diehl 2003; Gao et al. 2007). 

4.3.2. Expression of ABFT IL-1β during critical points of the farming process 

ABFT IL-1β was constitutively expressed in all samples examined with a significantly higher 

expression in the liver compared to the head kidney (Figure 3.19C). In contrast, in vivo studies in 

haddock (Fujiki et al. 2000), tilapia (Pelegrin et al. 2001), sea bass (Wang et al. 2004) and carp 

(Engelsma et al. 2001)) observed IL-1β expression only after stimulation. It is possible though that the 

examined fish from the newly caught and farm-acclimated group, although not infected or injured, 

were still showing some stress-related stimulation triggering IL-1β expression.  

IL-1β had the highest expression level of all three cytokines examined and it was significantly 

increased in damaged tuna compared to the newly caught fish (but not farm-acclimated fish) (Figure 

3.20C). Induction of IL-1β is usually a transient phenomenon, as seen in tilapia stimulated with LPS 

(Lee et al. 2006) where expression of IL-1β was undetectable 7 days post-infection. On the other hand, 

this study has shown that ABFT IL-1β can be up-regulated for at least one week after possible injury 

and/or infection. Precedents for a more chronic impact on IL-1β expression are seen in fish with 

ectoparasite infections, in the Atlantic salmon (Fast et al. 2006) where author reported up-regulation 

of IL-1β 40 days after infection with parasitic copepod Lepeophtheirus salmonis. More severe case 

was reported in striped trumpeter (Cavello et al. 2009) where IL-1β up-regulation lasted for more than 

10 months after infection with copepod Chondracanthus goldsmidi. Thus, chronic injuries, similar to 

chronic parasite infections, may lead to the prolonged responses as seen in this study. 

4.3.3. Expression of IL-1β, TNFα1 and TNFα2 in infected and uninfected ABFT gills 

Importance of cytokines during host response to parasite infection has already been proven through 

their up-regulation in protozoan (Morrison et al. 2007), monogenean (Sigh et al. 2004), copepod 

(Cavello et al. 2009) or digenean (Mladineo and Block 2010) infections. Interestingly, sanguinicolid 

digenean Cardicola orientalis failed to induce any of the target cytokines in gills, indicating the 
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probability of modification of host local immune response induced by the parasite (Polinski et al. 

2014). On the other hand, infection with monogenean ectoparasite N. melleni led to up-regulation of 

pro-inflammatory cytokines in S. lalandi spleen, suggesting host systemic response against the 

monogenean (Reyes-Becerril et al.  2017). P. appendiculatus significantly induced ABFT IL-1β at the 

site of infection, as reported in copepod infections in striped trumpeter (Cavello et al. 2009) and 

Atlantic salmon (Fast et al. 2006) (Figure 3.21A). D. katsuwonicola caused significant up-regulation 

of ABFT TNFα2 (Figure 3.21A) in contrast to the same species infecting PBFT gills, where IL-1β and 

TNFα1 were up-regulated, but TNFα2 expression has not been evaluated (Mladineo and Block 2010). 

Although this digenean in two closely related hosts did cause immune reaction in gills, the expression 

profiles of targets differed. Expression of cytokines in response to parasite infection clearly depends 

on host and parasite species, and consequently on the severity of the damage caused by the parasite. 

Therefore, versatility of the immune responses in the closely related host species and against the same 

group of parasites residing in the same location, is also influenced by many intrinsic (host) and 

extrinsic (parasite) factors: genetic background of host resistance, parasite pathogenicity and the 

degree of tissue damage caused, the phase and duration of infection, the size and age of the host and 

sequence of the exposure. Finally, ABFT moderate inflammatory response failed to seriously 

endanger neither of parasites examined in this study. This might be attributed to the tendency of pro-

inflammatory cytokines to decrease and stabilise at late times post infection to avoid further tissue 

damage caused by excessive inflammatory response (Alvarez-Pellitero 2008; Pérez-Cordón et al. 

2014).  

4.4. Pathohistological analysis of ABFT infected gill filaments  

Pathohistological analysis of two parasitic species presented in this study aimed to further investigate 

the host-parasite interactions through observation of cellular immune response. Difference in activated 

cell types between the two parasitic species reflected differential target expression in the infected 

tissue. Numerous mast cells found at D. katsuwonicola parasitation site can be related to significant 

up-regulation of TNFα, whereas tissue-destructive P. appendiculatus infection with goblet cells 

proliferation is accompanied by IL-1β induction. 
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4.4.1. Pathohistology of D. katsuwonicola-infected gills 

Adult didymozoids are a particular group of digeneans because they are usually found encysted in the 

host tissues instead of being attached in the organ lumen. Their plasticity of morphological traits and 

parasitation sites includes an enormous range of body sizes, shapes and tissue localizations (Mladineo 

et al. 2010) also reflected in a wide array of reactions inflicted by the hosts. Formation of a 

connective-tissue capsule with aggregation of macrophages around juvenile and adult trematodes is 

the most common type of parasite sequestration from the healthy host tissue (Dezfuli et al. 1997).  

ABFT tissue reaction consisted of a relatively thin and loose fibrous capsule, overlaid by proliferating 

squamous epithelium, abundantly interspersed by mast cells, eosinophils and goblet mucous cells in 

distinctive areas (Figure 3.22A). A peripheral nerve in close vicinity of the encysted afferent filament 

artery and didymozoids (Figure 3.22A) indicates that the parasite might stimulate the blood flow 

through the infected site, as suggested by Dezfuli et al. (2005). Consequently, one can speculate 

whether Didymosulcus employs its neighbouring artery only for juvenile migration towards its 

predicted site, and/or relays on it for further nutrition. On the other hand, the drawback of blood vessel 

vicinity for the parasite is that it enables inflow of immune cells from the circulation (Figure 3.22A). 

In this study, numerous mast cells, eosinophils and few rodlet and lymphocyte-like cells were located 

at the site of D. katsuwonicola cyst, visible also in the connective-tissue capsule and its anastomosing 

capillaries (Figure 3.22C). High number of mast cells is usually found at the parasitation site, 

especially inside, and/or in close proximity of capillaries as shown in this case (Sfacteria et al. 2015). 

The migration of mast cells normally occurs within microcirculation of gills, enabling them to move 

rapidly across the gills to the site of infection (Powell et al. 1990). Interestingly, in human skin mast 

cells appear to be predominant source of pre-formed TNF released upon inflammatory stimulus 

(Walsh et al. 1991) and corresponding to the significant up-regulation of this target observed in gill 

tissue surrounding the didymozoid. As for rodlet cells, unexpectedly low number was found 

surrounding didymozoid cyst compared to the copepod (Figure 3.22C). Although it has been 

suggested that rodlet cells have a functional role in teleost host defense against parasites (Reite and 

Evensen 2006, Secombes and Wang 2012), in didymozoid-infected ABFT gills there was no clear 

interaction between innate immune cells and scarce number of rodlet cells. The last conspicuous 
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cellular types observed surrounding the cyst were numerous and active mucous goblet cells in the 

peripheral cyst part (Figure 3.22D). Cytokines, like IL-1 and TNFα, have been suggested to induce 

secretions of the mucus (Buchmann 1999), which enables mechanical cleansing of pathogen as well as 

a stable media for secretion of different immune mediators. It can also contain substances with 

biostatic and biocidal activity as immunoglobulins, complement factors, lysozyme, proteases and 

lectins (Angeles Esteban 2012). Lastly, although goblet cells are probably not directly involved 

against Didymosulcus infection and are present in fewer numbers in comparison to copepod infection, 

their proliferation might indicate correlation with measured expression of target genes.  

4.4.2. Pathohistology of P. appendiculatus-infected gills 

While didymozoid infection is slowly developing and evokes mobilisation of mainly eosinophilic-

granulated cell types, P. appendiculatus infection is tissue-damaging, acute and characterised by 

hemorrhage and extensive proliferation of rodlet and mucous goblet cells (Figure 3.23C). Similarly, P. 

appendiculatus-infected SBFT gills also showed signs of hemorrhage with minor hyperplasia or 

fibroplasia (Adams et al. 2017). However, unlike ABFT, SBFT response to copepod infection was 

predominately characterized by eosinophilic inflammatory response, and no rodlet or goblet cells were 

reported at the site of infection. Specific alteration in copepod-infected ABFT gills was observed in 

form of cells undergoing death process, although it was not possible to differentiate between necrotic 

and apoptotic changes (Figure 3.23E and F). Whilst didymozoids in general do not impose major 

mechanical compression on the tissues that might induce necrosis (Perera 1992; Perera 1994), as 

confirmed in this study, copepods that attach by clamping tissues consequently do (Figure 3.23A). In 

contrast to necrosis as an externally induced cell injury, apoptosis is a protective mechanism of cells 

that ensures a death program triggered by detection of an extra or intracellular unfavourable condition, 

i.e., deprivation of growth factors, DNA damage, or infection. It leads to increased caspase and 

endonuclease activities, cleavage of target substrates, nuclear condensation, DNA fragmentation, and 

cell shrinkage (Guillermo et al. 2009), aiming at “altruistic suicide” of the host cell, before the 

invading organism has a chance to multiply and disperse throughout other host cells (James and Green 

2004). Interestingly, significant expression of TNFα would be expected in the tissue undergoing 
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necrotic/apoptotic changes as in copepod infection, especially because of its ability to induce NF-kB-

mediated apoptosis (Reyes-Cerpa et al. 2012), but in contrast it was measured in didymozoid infection 

that lacks such alterations. This suggests that copepod-induced cell death is not dominated by this 

cytokine as it was previously suggested in cell line models (Gaur and Aggarwal 2003). It also supports 

the fact that TNF-induced cell death plays only a minor role compared to its overwhelming functions 

in the inflammatory process and that its death-inducing capability is weak compared to other family 

members (such as FAS receptor or apoptosis antigen 1) (Gaur and Aggarwal 2003). Acute tissue-

destructive inflammatory response in copepod infection supported by IL-1β up-regulation was 

dominant over cell-death signalling and TNFα expression. Induction of IL-1β in copepod-infected 

gills may also be associated with numerous mucus secreting goblet cells due its ability to stimulate the 

release of mucin in these cells (Deplancke and Gaskins 2001). In addition, mammalian goblet cells 

also express inflammasome, a multiprotein complex involved in the production of active mature IL-1β 

(Birchenough et al. 2015).  
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5. Conclusions 

Two TNFα isoforms are present in Atlantic bluefin tuna (ABFT): TNFα1 and TNFα2. Both isoforms 

showed good homology to other known TNFα’s with the highest amino acid identity with PBFT 

TNFα molecules. ABFT TNFα2, like in Pacific bluefin tuna (PBFT), lacks ARE or endotoxin-

responsive elements typical for teleost cytokines. Low amino acid identity and phylogenetic separation 

of ABFT TNFα1 and TNFα2 suggest their distinct physiological roles. ABFT TNFα1 and TNFα2 

share the same tertiary structure as mammalian homologues, but with different receptor-ligand binding 

mechanisms.  

ABFT IL-1β showed the highest identity with Southern bluefin tuna (SBFT) IL-1β. Presence of 

instability motifs (ATTTA) within IL-1β introns suggests their possible influence on regulation of 

mRNA splicing and/or expression. ABFT IL-1β also undergoes incomplete splicing which is often 

seen in other teleosts IL-1β. Homology modeling revealed that ABFT IL-1β has similar tertiary 

structure as its human homologue, but binds differently to its receptor. 

ABFT IL-1β and TNFα2 were significantly induced in vitro by PAMPs and D. katsuwonicola and P. 

appendiculatus protein extracts, as well as during natural gill infection with two parasites. This 

suggests that they play an important role in host defense against wide array of pathogens. Contrary, 

ABFT TNFα1 showed relatively poor up-regulation following both in vitro stimulation and parasite 

infection, but had stronger expression then TNFα2 in caged ABFT suffering infections and/or injuries 

for a prolonged period of time. Expression of these immne mediators in parasites PE-stimulated PBL 

(in vitro model) was congruent to that in infected tissues (in vivo model), diverging only in respect to 

parasite species. Patohistological changes differed between encysted didymozoid and actively-attached 

copepod, being congruent with the expression profiles of targets in the gills. Interestingly, fold change 

of targets' expression was far more elevated when PBL culture was stimulated by purified PAMPs 

(LPS and Poly I:C) then by the total extract of parasite protein extracts, even when two doses (1 µg/ml 

and 10 µg/ml) were used. This might be related to a lower antigenicity of parasites resulting in a mild 

host immune response that is able to restrict the parasite to its attachment site or enclosed within the 

cyst, but fails to endanger its survival in a larger extent. It also suggests that the host-parasite 
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interaction balances between moderate innate immunity response and evading mechanisms adopted by 

a digenean and copepod. 

This study has confirmed that TNFα1, TNFα2 and IL-1β could be used as biomarkers for monitoring 

of ABFT health status. Furthermore, their transcriptional regulation in both natural and controlled 

conditions should continue to be investigated in order to better understand the physiological context 

important for tuna welfare and adapt optimal rearing practices for future ABFT cultivation.  
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7. Summary 

Atlantic bluefin tuna ABFT, Thunnus thynnus, is one of the largest Thunnus species with high 

economic significance for Croatian industry. However, little is known about its innate immune system 

and defense mechanisms and to date there are no reports of cloning and expression analysis of any 

major immune genes of ABFT. Therefore, within this thesis the first cytokine molecules in ABFT 

(TNFα1, TNFα2 and IL-1β) are cloned and compared to known sequences in other vertebrates, 

especially teleost fish. In order to evaluate putative significance of ABFT TNFα1, TNFα2 and IL-1β 

as biological markers, their expression levels were monitored and described in selected tissues, at 

various stages of two years-long farming process. To evaluate ABFT TNFα1, TNFα2 and IL-1β 

induction by PAMPs and potential role in response to bacterial and viral infections, their expressions 

were evaluated in simulated acute infection using peripheral blood leukocytes stimulated in vitro with 

LPS and Poly I:C. Lastly, the role of three cytokines in acute and chronic parasitic infection was 

examined during natural infection with Pseudocycnus appendiculatus (Copepoda) and Didymosulcus 

katsuwonicola (Digenea), as well as during leukocyte exposure to total protein extracts isolated from 

two parasite species. As an additional record to support latter molecular results, a pathohistological 

analysis of D. katsuwonicola and P. appendiculatus was performed on semithin sections of infected 

gill filaments. 

ABFT TNFα mRNA molecules were comprised of a 744 bp (TNFα1) and 738 bp (TNFα2) open 

reading frame (ORF) that encoded a protein of 247 (TNFα1) and 245 (TNFα2) amino acids, showing 

good homology to other known TNFα’s with highest amino acid identity with PBFT TNFα sequences. 

ABFT TNFα2 3’ UTR contained no ARE or endotoxin-responsive elements, implying rather unique 

situation when compared to other teleost TNFα2 mRNAs. ABFT TNFα1 and TNFα2 shared only 39% 

of amino acid identity, suggesting that they have distinct phylogenetic separation and physiological 

roles. The coding region of the ABFT IL-1β mRNA sequence comprised of 724 bp encoding 246 

amino acids with highest identity with SBFT IL-1β. Instability motifs (ATTTA) were also found in the 

ABFT introns, except intron 3, implying a possibility that these intron instability motifs influence or 

have a role in regulating splicing of pre-RNA as well as mRNA expression. Within mRNA derived 
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from damaged ABFT liver and head kidney tissues, a second, incompletely spliced transcript was 

detected containing exons 1-5 plus intron 1.  

Induction of ABT IL-1β and TNFα2 by PAMPs and protein extracts from D. katsuwonicola and P. 

appendiculatus, as well as during natural infection with the two parasites, suggests their important role 

in inflammation, being engaged in controlling parasite infections, in contrast to ABFT TNFα1. 

Targets' expressions in general followed congruent pattern in parasites PE-stimulated PBL (in vitro 

model) and in host tissue (in vivo model), diverging only in respect to parasite species. Although 

ABFT TNFα1 showed relatively poor up-regulation following in vitro stimulation and parasite 

infection, it had stronger expression then TNFα2 in caged ABFT suffering infections and/or injuries 

for prolonged period of time. Cellular innate response to the digenean D. katsuwonicola showed rather 

chronic character, resulting with a moderate inflammatory reaction that fails to seriously endanger 

digenean existence. Copepod P. appendiculatus, attached to the gill epithelium by clamping, caused 

direct tissue disruption with undergoing necrotic or apoptotic processes, and extensive proliferation of 

rodlet and goblet cells. Differential expression patterns of target cytokines in tissue surrounding two 

parasites and in vitro PBL model suggest that quality and quantity of tuna immune response is 

conditioned by parasite adaptive mechanisms and pathogenicity. 
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8. Sažetak 

Atlantska plavoperajna tuna Thunnus thynnus jedan je od najvažnijih hrvatskih izvoznih proizvoda 

riboprerađivačke indutrije, pridonoseći s 50% nacionalnog izvoza prema japanskom tržištu. Uzgoj 

tune u Hrvatskoj se bazira na ulovu (capture-based aquaculture), što podrazumijeva hvatanje 

juvenilne tune (8-15 kg) iz prirode i njen uzgoj u kavezima tijekom sljedeće dvije godine ili koliko je 

potrebno da postigne izlovnu masu od najmanje 30 kg i optimalni udio masti i proteina u mišićju. 

Tijekom takvog produženog uzgojnog razdoblja nepredvidivi okolišni čimbenici, izloženost 

nametnicima i drugim patogenim mikroorganizama te neuravnotežena prehrana pogoduju pojavi i 

širenju bolesti. Za razliku od odrasle, juvenilna tuna je vrlo osjetljiva na infekcije, posebno u fazi 

prilagodbe životu u kavezu kada je imunološko stanje jedinki već opterećeno stresom uzrokovanim 

ulovom, prijevozom i prijelazom u kaveze. U usporedbi s drugim komercijalno značajnim vrstama, još 

se uvijek malo zna o imunološkom sustavu i njegovoj regulaciji u ove, za akvakulturu iznimno važne 

vrste.  

Prvi cilj ove studije bio je kloniranje čitave sekvence mRNA i gDNA pro-inflamatornih citokina 

TNFα1, TNFα2 i IL-1β atlantske plavoperajne tune te usporedba s istima u ostalih kralješnjaka služeći 

se tehnikama poravnavanja višestrukih sekvenci, filogenetskim analizama i homolognim 3D 

modeliranjem. Nadalje, kako bi se ocijenila upotrebljivost triju citokina kao bioloških biljega njihova 

ekspresija je kvantificirana u odabranim tkivima tijekom tri kritična razdoblja dvogodišnjeg uzgoja. U 

svrhu evaluacije aktivacije TNFα1, TNFα2 i IL-1β u atlantske plavoperajne tune različitim 

imunostimulansima te njihove moguće uloge tijekom bakterijskih i virusnih infekcija, njihova 

ekspresija se kvantificirala na modelu akutne infekcije koristeći leukocite krvi stimulirane in vitro s 

LPS-om i Poly I:C-om. Na poslijetku, uloga triju citokina tijekom kronične i akutne infekcije 

nametnicima, istražena je modelom infekcije koristeći leukocite krvi stimulirane in vitro ekstraktom 

nametnika kopepodnog račića Pseudocycnus appendiculatus i dvorodnog metilja Didymosulcus 

katsuwonicola, kao i tijekom prirodne infekcije škrga dvama nametnicima. 

Rezultati su otkrili da kodirajuće regije TNFα mRNA molekula u atlantske plavoperajne tune sadrže 

744 bazna para (bp) (TNFα1) i 738 bp (TNFα2) koje kodiraju proteine sačinjene od 247 (TNFα1) 
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odnosno 245 (TNFα2) aminokiselina, što je blizu prosječne duljine proteina TNFα u riba (242 

aminokiseline). Dobivene sekvence su pokazale relativno visoku sličnost s istim sekvencama u drugih 

koštunjača, a posebno s TNFα pacifičke plavopeajne tune Thunnus orientalis. Zanimljivo, u 

neprepisujućoj regiji (untranslated region UTR) 3' kraja molekule TNFα2 atlantske plavoperajne tune 

nisu pronađeni elementi karakteristični za 3’UTR TNFα2 drugih koštunjača (AU-rich elements ARE i 

endotoxin-responsive elements). Nadalje, međusobna sličnost molekula TNFα1 and TNFα2 iznosi 

samo 39%, što upućuje na filogenetsku odvojenost dobro vidljivu i na filogenstskom stablu. TNFα1 se 

tako nalazi u istoj grupi s ostalim pripadnicima najstarijeg reda Perciformes, udaljen od TNFα2 i 

ostalih pripadnika mlađih redova Cypriniformes i Siluriformes. Ovakva filogenetska separacija, kao i 

razlike u aminokiselinskim sljedovima upućuju i na moguće različite fiziološke uloge dviju molekula 

TNFα. 

Rezultati homolognog modeliranja pokazali su da su tercijarne strukture TNFα1 and TNFα2 molekula 

atlantske plavoperajne tune odgovarajuće onima u čovjeka, što je posljedica konzerviranosti ključnih 

segmenata odgovornih za formaciju sekundarne i tercijarne strukture. Međutim, aminokiseline koje 

sudjeluju u stvaranju veze receptor-ligand kod čovjeka pokazale su slabu konzerviranost, što upućuje 

na različite mehanizme receptor-ligand vezivanja između TNFα atlantske plavoperajne tune i 

njegovog humanog homologa.  

Kodirajuća regija IL-1β mRNA molekule atlantske plavoperajne tune sastoji se od 724 bp i kodira 

protein od 246 aminokiseline. Najveću sličnost dijeli sa proteinom IL-1β južne plavoperajne tune 

Thunnus maccoyii od kojega se razlikuje u devet aminokiselina. Zanimljivo, tzv. ‘instability motifs’ u 

vidu sljedova ATTTA, inače specifični za 5' UTR molecule IL-1β molekule, u atlantske plavoperajne 

tune su pronađeni i unutar introna. Ovakav položaj sljedova ATTTA upućuje na njihovo moguće 

sudjelovanje u regulaciji prekrajanja nezrele mRNA IL-1β i/ili u ekspresiji IL-1β. Također su uočeni i 

mRNA transkripti koji uz eksone 1-4 posjeduju i intron 1. Inače, takvo i slična nepotpuna prekrajanja 

IL-1β mRNA česta su i kod drugih koštunjača.  

Homolognim modeliranjem proteina IL-1β atlantske plavoperajne tune utvrđeno je da molekula ima 

sličnu tercijarnu strukturu kao i njegov humani homolog, međutim ne stupa u vezu sa svojim 
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receptorom na isti način, jer posjeduje samo jednu od ukupno sedam aminokiselina za koje je 

dokazano da sudjeljuju u vezivanju humanog proteina IL-1β s njegovim receptorom.  

Aktivacija IL-1β i TNFα2 nakon stimulacije in vitro imunostimulansima (LPS i Poly I:C) i 

proteinskim ekstraktom nametnika D. katsuwonicola i P. appendiculatus, ali i tijekom prirodne 

infekcije škrga dvama nametnicima dokazuje kako ova dva citokina igraju važnu ulogu u upalnim 

procesima i općenito imunološkom odgovoru atlantske plavoperajne tune na različite vrste patogena. 

TNFα1 je pokazao slab odgovor u modelu in vitro, međutim u jetri tuna koje su pokazivale znakove 

infekcije bio je značajno eksprimiran. Ekspresija ciljnih gena tijekom stimulacije leukocita 

proteinskim ekstraktima nametnika (model in vitro) bila je sukladna onoj tijekom prirodne infekcije 

istim nametnicima (model in vivo), razlikujući se samo u odnosu na vrstu nametnika. U oba slučaja 

citokini su bili slabo do umjereno eksprimirani, za razliku od stimulacije LPS-om i Poly I:C-om koja 

je rezultirala njihovom mnogo snažnijom ekspresijom. 

Patohistološka analiza zaraženih škržnih filamenata otkrila je kako je stanični odgovor atlantske 

plavoperajne tune na infekciju dvorodnim metiljem D. katsuwonicola kroničnog karaktera te rezultira 

odvajanjem nametnika u vezivno-tkivnu kapsulu. U neposrednoj blizini nametnika zabilježeni su 

različiti tipovi stanica imunološkog sustava (mastociti, eozinofilni granulociti, mukozne vrčaste 

stanice i tzv. ‘rodlet cells’ štapičaste stanice). S druge strane, kopepodni račić svojim prihvaćanjem za 

škržne filamente uzrokuje oštećenje epitelnog tkiva popraćeno nekrotičnim/apoptotičnim staničnim 

procesima te snažnu proliferaciju mukoznih vrčastih stanica i štapičastih ‘rodlet’stanica.  

Rezultati patohistološke analize zaraženih škržnih filamenata, jačina lokalne ekspresije citokina te 

slaba antigenost obaju nametnika tijekom stimulacije in vitro ukazuju na umjereni imunološki odgovor 

tune, koji iako ne uspjeva trajno ugroziti opstanak nametnika, pruža učinkovitu zaštitu od širenja 

infekcije. Jačina i vrsta imunološkog odgovora atlantske plavoperajne tune stoga uvelike ovisi o vrsti i 

patogenosti nametnika, njegovom razvojnom stadiju i stupnju antigenosti te trajanju same infekcije.   
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