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1. Introduction

1.1 Structure of eukaryotic genomes

1.1.1 Genome size paradox

The eukaryotic genome is organized in linear chromosomes, which are lecated in @ membrane-bound
organelle, the cell nucleus. Over the last 60 years, scientists have estimated the genome sizes of almost
20,000 eukaryotic genomes and have found an astonishing difference in genome size between different
eukaryotic species. Apart from this unexpected difference in the genome size, it also became clear that
there is no correlation between the genome size and organism complexity. In general, the size of
eukaryotic genomes ranges from the modest,2.9 Mbp of the single-celled parasite&ncephalitozoon
cuniculi [1] to the massive 160 Gbp of the geneme of the plant Tmesipteris oblanceolata, a span of over
61,000 [2]. This genome size paradox is especially prominent in plants, for example, model organism
Arabidopsis thaliana has small genome with only ~135 Mb [3] while Paris japonica has of astonishing
genome of 150 Gb in size [4]. The human genome (Homo sapiens) is more or less in the middle with 3Gb
genome size[5]. However, most non=parasitic eukaryotic organisms have relativelyaconsistent gene counts
(ranging from 5,000in Sdecharamyces pombe [6] to 60,000 in Trichemonas vaginalis [7]), in multicellular
organisms the discrepancyiisiéven larger and the number of genes amongthe complex organisms changes
only 2-3 times, ranging:from 15000 to 35000 genes'while the genome sizes can change 61000 fold. The
axolotl (Ambystoma mexicanum), for example, has about the same number of genes as humans (~23,000),
but'its genome’is 10 times larger [8] (32Gb, H. sapiens 3.2Gb).” Therefore, it is clear that genome size does
not correlate with the number of genes,or with the biological complexity of an organism. This
phen@menon, which is observed ifi all eukaryotiespecies, is known as the C-value enigma or genome size
paradox [9]. The solution to this enigma/paradox lies in the structure of the eukaryotic genomes

themselves.
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1.1.2 Repetitive DNAs
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(TEs) and tandem repeats.
Transposable elements are scattered, repetitive sequences that move through the genome by duplication
and relocation. The two largest classes of TEs are autonomous and nonautonomous transposable
elements. Autonomous TEs consist of DNA transposons and retrotransposons. DNA transposons encode
a transposase enzyme, which is flanked by inverted terminal repeats. When expressed, the transposase

recognizes these repeats, excises the transposon, and reinserts it at a new genomic location.
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Retrotransposons are divided into LTR (long terminal repeats) and non-LTR retrotransposons [13]. The

most studied non-LTR transposons in mammals are L1 LINE (Long interspersed elements) elements, which

dominate, accounting for a

transposons represen

phila melanogaster TEs accou -20% of the genome. The most abundant TEs are non-

LTR retrotransposons, particularly the L e elements. DNA transposons are also present, though in
lower abundance than in plants or mammals [21]. The axolotl (A. mexicanum) has one of the largest known
vertebrate genomes (~32 Gb), with more than 60% of its genome composed of TEs. LINE elements are
highly abundant, and the high content of repetitive sequences contributes to the massive genome size of

these amphibians [8].



The other most abundant class of repetitive elements are tandemly repeated sequences such as

ribosomal DNAs, telomeric repeats, microsatellites, minisatelites and satellite DNA which serve various

leading to their classifica

hypervariability, mini

5. Additionally, minisatellites ¢

lead to genomic ‘rran

S

Microsatellites

Minisatellites

Satellite DNA

Figure 1.2 Hierarchical breakdown of different forms of repetitive DNA commonly found in genomes, with transposable
elements having mobile capabilities and tandem repeats often forming structural components. Pink shade represents satellite
DNA.



1.1.3 Satellite DNAs

that satDNAs are associated

peri-(centromere).

\ 4

Satellite DNA
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Figure 1.3 Satellite DNA organization. Mon r represent the repetitive unit of satDNAs and monomers are
organized in satDNA arrays. Satellitome represents the collection of all satDNA families within a genome. Courtesy
of Evelin Despot Slade.



1.1.4 (Peri)centromeric satellite DNA

composed pri
1-2% of
Major Satellite ( at

D -bp

roles in centromeric function remain to ully understood [31].

D. melanogaster, on the other ha ctly different centromeric satDNA structure, with repeat

atare much shorter, typicall pared to the longer nucleosomal repeats found in most

other complex eukaryotes [23]. Early res assigned the centromere function of D. melanogaster to a
420-kb locus on the X-derived minichromosome Dp1187, which contains AAGAG and AATAT satellites
interspersed with complex sequence islands. The centromeric satellite repeats of D. melanogaster
consists mostly of short tandem arrays of 5- to 12-bp sequences, often following the RRNRN pattern,

where R represents a purine and N any nucleotide [32].



1.1.5 Euchromatic satellite DNAs

enes by altering

interacting with the

. These findings suggest that
cing gene regulation and chromatin

nificance of euchromatic satDNA

bles of satDNA
Even early studies focused on elucidatin role of satDNA found evidence that it is essential for the
maintenance of chromosome stability and proper segregation during cell division. Ando et al. (2002)
elucidated the role of CENP-A loading and kinetochore assembly at the centromere, with satDNA serving
as essential scaffold for proper chromosome segregation in H. sapiens Hela cells [39]. A unique

mechanism of transposon “cleaning” from the centromere of A. thaliana, as described by Wlodzimierz et.



al. [40], suggests that satDNA may not just self-propagate but also engage in self-maintenance processes

akin to essential genes. The enrichment of the non-B form in satDNAs at centromeres of primates,

confirmed in holocentric Meloidogyne spp. where conserva

satDNAs and the centromeric H3 protein, aCENH3,

different satDNA families that share the same conserve bp motif [43]. Thus, it can be assumed that

conserved motifs in satDNAs, such as the CENP-B box an 19bp motif, can potentially serve as a

functional signal of the centromere in the 3 protein binding site.

Intriguingly, new studies have also pro for role of satDNA trans s in th cess of

malignant transformation, thu i . satDNA
transcription has become athophysiologic

contribution, our kno in normal physiological

shock, forming nuclear stress bodies (nS tinfluence RNA splicing and protect against cell death [49].
Similar stress-related functions of satDNA transcripts are found in Drosophila, where SatDNA lll, located
on multiple chromosomes, plays roles in heterochromatin formation, centromeric function, and gene
regulation [50]. In F. catus, FA-SAT, a major satDNA sequence is transcribed across different species,

where it interacts with PKM2, regulating cell proliferation and apoptosis. The transcriptional activity of



FA-SAT and its absence is associated to cell death, with potential implications for cancer, as aberrant

satDNA ncRNA expression has been associated with cancer progression, aneuploidy, and hypomethylation

some satDNAs across related genomes is suggested to be under cell-spe
suggesting a functional role for satDNA transcription, possibly rel gulation or
chromosomal architecture [52].

Finally, Bosco et al. [53] demonstrated that satDNA under-repli is i nges in genome size

species, acting as genomic signatures that reflect divergence speciation events.

1.1.7 Evolution and propag

mplification and

lain the evolution of

, resulting in greater sequence
ecies. Rather than accumulating
evolutionary models, mutations
are eliminated. This evolutionary pattern is
cular drive, which involves both the homogenization and
h these mutations either spread or are removed. In
reproductively isolated organisms, thi ss leads to rapid homogenization of satDNA within the

genome of a species, causing the repeats to become more similar within a population than between two

reproductively separated groups [54].
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In Drosophila species, Kuhn et al. [56] e is process at chromosomal and arra Is using the

library concept of satellite DNA evolu ecies-specific satellite profiles emerge from differential
amplifications or contractions of a shared pool of sequences across related genomes. This "library" acts
as a persistent source of sequences, allowing each species to independently expand certain sequences
into dominant, high-copy satellites. As multiple satellite DNAs typically exist within a genome, fluctuations

in their copy numbers can swiftly and significantly alter the overall genomic satellite profile.
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This satDNA interspecies conservation without species-specific mutations was first observed in four
Palorus congeneric species, which have been separated by up to 60 million years [55]. Each species
contains a single AT-rich pericentromeric satDNA on all chromosomes, compriSing 20-40% of their
genomes, with the sequences showing high conservation in terms of ‘sequence, repeat length, and
organization. In each Palorus species, one of the four satellite families iss@@mplified whilesthe others are
present as low-copy-number repeats, making up about 0.05% of the genome. Theseéylow-copy satellites
are interspersed within the large arrays of the major satellite thretighout the heterochromatic blocks. The
library model has been also confirmed in plants and nematodes [524; [58].

Given the fact that satDNA exhibits very complex evolution at the genomic level, such as the diversity of
satDNA profiles, dynamic processes of tandem duplications; contractions and sequence homogenization,
high-quality and highly continuous telomere-to-telomere gename assemblies are essential for the proper

understanding of the underlying evolutionary models of satDNAs.

1.2 Genome assembly

1.2.1 History of sequencing

Since the discovery of DNA anddts role in inheritancé; numereus methods have been developed to extract
and convert genomicsequences into digital data. The first-generation DNA sequencing, based on Sanger
method, works by condueting four separate polymerization reactions using tritium-labeled primers and
chain-terminating = 2,3-dideoxynucleoside triphosphates (ddNTPs),” which terminate DNA strand
elongation at specific points, generating BNA fragments of varying lengths. In 1977, this method led to
the sequencing of the first genome, the 5,368 bp phage $X174 genome [59]. Significant improvements to
Sanger sequencing, such as capillary'sequencing and automated gel reading, allowed for rapid growth in
the number of sequenced genomes. By the'late 1980s, the NCBI database had over 40 million sequenced
bases [60]. The Human Genome Project was launched in 1990 with the aim of sequencing the human
genome by 2005, but was completed ahead of schedule in 2003 at a cost of around 2.7 billion dollars. This
project spurred innovation in sequencing technologies and assembly algorithms, particularly the whole-

genome shotgun strategy, which uses restriction enzymes to break genomes into millions of smaller

11



pieces, avoiding the time-consuming cloning step commonly used and allowing parallel sequencing of

multiple short fragments at once [61]. This innovation in turn enabled the development of NGS (Next-

of complex genomes and making high-quality genome‘mblie

Human Complete The Human
mitochondrial cell genome First draft Human The Genome Microbiome
g q d q d Genome Analyzer lllumina PacBio sequencer Project completion
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Figure History of technology development a enome sequencing milestones. Advent of TGS technologies

star ht at the beginning of 2010s.
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1.2.2 Genome assembly approaches

scaffolds using additional data, such as linkage maps and ju ' , are further organized

to construct complete chromosomes (Figure 1.6).

ffolds

Chromosomes

Figure 1.6 Schematic representation of mbly process and key products of the assembly. Reads are
assembled into contigs, which are linked into scaffolds spanned by sequence gaps (Ns). Finally, scaffolds are linked
into full chromosomes.

Two main algorithmic approaches for assembling reads into contigs developed in the early phases of

genome sequencing and are still widely used today are Overlap-Layout-Consensus (OLC) and De Bruijn

13



Graph (DBG). Both algorithms aim to reconstruct the genome from short sequence reads, but they do so
in distinct ways. The OLC algorithm begins by identifying overlaps between all pairs of reads in an "all-vs-
all" manner, often using dynamic programming techniques like the Needleman-Wunsch algorithm to find
the best possible alignments between reads. This phase produces an overlap graph, where nodes
represent the reads and edges represent the overlaps. Since the initial overlap graph can®ontain many
redundant or conflicting overlaps, the next step, called the layout phase, simplifies the,graph by removing
unnecessary information, reducing it to the smallest and most aceurate ypossible form. In the final
consensus phase, the assembler breaks any unresolvable parts of the graph—regions where no read can
bridge a gap—into separate contigs. The consensus sequence is generated from all reads mapped to each
contig, producing an optimal representation of the genome,segments [63].

The DBG assembly takes a different approach. Instead of directly comparing entire reads for overlaps, it
breaks each read into shorter subsequences called k-mers, where "k" is a fixed length. These k-mers are
used to build a directed graph, where nodes répresent’k-mers and edges indicatetheir adjacencies in the
reads. The graph is traversed using a Eulerian walk; which ensures that'each edge (or connection between
k-mers) is visited exactly oncé. Unlike the'OLC approach, DBG focuses on‘the relationships between these
smaller subsequences_rather, than whole reads. However, like OLG#DBG, assemblies are also challenged
by genomicarepeats, whichican Jéad to breaks in the graph and the formation of separate contigs when a
repeat region cannot'be resolved [64].

Both methodsihave strengths and weaknesses OLC is‘mere suited to longer reads, as it relies on finding
overlaps betweenfentire reads, making it computationally intensive for large datasets. On the other hand,
DBGis faster and more €fficient for assembling a larger.number ofishorter reads, as it works on fixed-
length k-mers rather than aligning full €#eads. However, DBG assemblies can struggle with high repeat
content which “tangle” the graphs and mayirequire more sophisticated methods to handle genome
complexity. Both approaches are constantly evolving, and many modern assemblers use hybrid methods

and various optimizations to take advantage of both algorithms.
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1.2.3 2" generation sequencing based assembly approaches

In the mid-2000s, the advent of next-generation sequencing (NGS) technologies, led by Illumina,
revolutionized genomics by introducing a novel method called Sequencing by Synthesis (SBS). Unlike
traditional sequencing methods, SBS enabled much faster and more cost-effective sequencing through
several key innovations. The process begins with DNA fragmentation, followed by size selection of the
fragments, favoring fragments close to the output capabilities of the machine (generally 50-300bp).
Special adapters are then ligated to the ends of these fragments, a steépsthat prepares them for
sequencing. Before sequencing, the fragments are typically amplified through polymerase chain reaction
(PCR) to increase the library size, ensuring that evenssmall amounts of starting material can produce
sufficient sequencing data. Once prepared, the amplified library is loaded onto a flow cell—a surface
containing embedded sequences complementary to the adapters. The sequencing itself occurs in a
massive parallel sequencing reaction, where thousands of DNA fragments are sequenced simultaneously.
The flow cell's sequencing process involves stepwise, polymerase-driven incorporation of fluorescently
labeled nucleotides. Each nucle6tide added emits a unique fluoreseént signal, whichissdetécted by an
optical reader, allowing the“sequence to be determined in real-time ashbasésware.incorporated. The
development of SBS andother NGS technologies led to a dramaticéduction in'sequencing costs (Figure
1.7a). Companies competedto offer the most efficient sequencing services,avhich further accelerated the
spread of this technolagy. Together with the increasejin computing power,this led to the democratization
of genome sequencing and enabled the assembly “ofsnumerous draft genomes of eukaryotic and
prokaryotic organisms. This explosive growth in'sequencing capacity.is perhaps best illustrated by the
rapichincrease inthe number of publicly available genome sequences and the simultaneous decline in the
cost of sequencing (Figure 1.7b). For example, the cost of sequencing a human genome has dropped from

millions of dollars in the early 2000s to less than $1,000 in the 2010s [65].
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Figure 1.7 A Exponential reduction in cost of sequencing pehMegabase of sequencing as calculated by NCBI from
[66] B Rapid increase in the number of bases storediimpublic databases (left) and number of sequences (right), data
adapted from [60]

By 2015, these advanced in sequencing technologies and subsequént assembly allowed for complete
genome assemblies of multiple model arganisms such as the first genome assembly of D. melanogaster
published in 2000, with a genome size of vapproximately 180 million base pairs (Mb) [67]. The
Caenorhabditis elegans genome, sized at.about 100 Mbp, was sequenced in 1998 [68]. A. thaliana had its
genome, which is around 125 Mb, published in 2000 [69]. For M. musculus the 2.7 Gbp sized was
published in 200 2[70]. Lastly, the first genome assembly for Z. mays, with a size of approximately 2.3

Gbp, was published in 2009 [71].
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Limitations of 2" generation based assembly approaches

Despite the numerous advancements in NGS sequencing technologies, there d significant
limitations in their ability to resolve and assemble complete comple

challenges is accurately assembling the non-coding parts of the genome 2petitive regions.
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Figure 1.8 Limitations in efficient genome assemblies. All apart of A are problems stemming from various repetitive
regions in the genome, preventing complete telomere to telomere assembly when using reads of insufficient
length, while A can be solved by higher coverage and better sequencing. Adapted from [73]

Due to the added complexity of resolving repetitive regions of the genome, complete assembly of even
the most important model organisms has long been challenging. For example, “until recently [5], the
human reference genome assembly, known as GRCh38.p14, contained 999 gaps [/4]. Thé importance of
continuous, gap-free genome assemblies, often referred to as telomere-to-telomere (T2T) assemblies,
cannot be overstated, as these previously missing repetitive eletnents have been shown to contribute to
the evolution of genomes by facilitating chromosomal _rearrangements;,gene duplications and the
regulation of gene expression [47]. However, their proper inclusion in.genome assemblies depended on
the development of novel methods for genome sequencingithat enabled much longer read lengths, and

this is the main driver for the development of third-generation sequencing technologies.

1.2.4 3" generation sequengifigibased assefmbly approaches

Several paradigm shiftsdnsgenomessequencing technologies have_enabled the,leap to third-generation
sequencing{TGS). The firstds thedlimitation of sequencing space/from the DNA adapter plate to the single
molecule level@€embined with much higher polymerase accuracy.and more powerful optical devices that
can capturéithe light,signal at the molecular level. The'second major change has been the move away
from SBS-based miethodsiand the development of different protein ehemistries such as nanopores that
enable theisequencing of native, minimally processed DNA.

The first commercial single-molecule sequencing technology was introduced by Helicos Biosciences in
2008. This breakthrough technology enabled,the direct sequencing of single DNA molecules without
amplification by attaching DNA molecules to coated glass surfaces and then applying conventional SBS
techniques, skipping the preparative amplification step. However, this approach was characterized by
short read lengths (30-35bp), high costs and the need for a lot of starting material, which limited its
accessibility and widespread use. The first true single-molecule sequencing technology, known as Single-

Molecule Real-Time (SMRT) sequencing, was introduced by Pacific Biosciences (PacBio) in 2011. This
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technology represented a significant advance in genome sequencing as it allowed direct observation of
DNA synthesis in real time at much longer lengths [75].

The concept of using nanopores for sequencing DNA or RNA molecules dates back to the late 1980s.
Researchers envisioned using nanopores embedded in a membrane to read,single-stranded (ss) nucleic
acids as they pass through the pore. Despite the promising concept, té€chnical problems delayed its
practical implementation. It was not until 2012 that the first successful sequencing results using nanopore
technology were reported. This breakthrough proved the feasibility of nanopeorefsequencing and paved
the way for the development of commercial nanopore sequencing platforms, such as those from Oxford
Nanopore Technologies, which have since revolutionizedithe field with their ability to sequence long reads

and process a wide variety of sample types [76].

PacBio sequencing

One of the most significant advaneements in’ sequencing-by-synthesis (SBS) technologies was the
development of zero-mode waveguides (ZMWs) by PacBio. These nanometer-scale wells, combined with
advanced material engineering, enable real-time observation of nucleotide incaorporation by a single DNA
polymerase molecule indan individual well. This innowvation represents{a major leap forward from
traditional SBS"methods;, which relied on adapter=based plating :and.avere limited by the inherent
inaccuracies associated with the adapter plates, mainly the quality drop-off after a certain read length
limit. Initially, PacBio SMRT technology faced challenges with short read lengths (around 1.5 kb) and high
error rates (abeut 11%). Over time, PacBio made severaldimprovements, such as the introduction of
hairpin adapters, better polymerases, andlabeling the 5" phosphate of dNTPs, which is subsequently
released instead of incorporating the nucleotide base into the growing nucleotide chain as used in NGS.
These advances have enabled the development of two main types of PacBio sequencing: High Fidelity
(HiFi) and Continuous Long Reads (CLR) [75]. HiFi sequencing provides highly accurate reads
(approximately 99.9%) by generating multiple runs of the same DNA molecule, resulting in long reads of
typically 10 to 20 kb. In contrast, CLR sequencing focuses on generating extremely long reads with a higher
error rate (5-15%), which is useful for applications such as de novo genome assembly and structural

variant detection [77]. These sequencing technologies have several advantages, such as very high read
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length compared to NGS and, in the case of HiFi, extremely high accuracy, high yield in single sequencing
experiments and, because they work with native DNA, they can be used to find indels and other structural
variations when used in studies with multiple genomes. On the other hand, the main disadvantages of
PacBio sequencing are the relatively high prices and start-up costs for sequencing machines andflow cells.
In addition, they are limited to DNA input, and modified base detection is also limited due to the
complexity of modified base detection based on polymerase sequencing alone, and although efforts have

been made in recent years, error rates in modified base detection arestill*high.[78] .

Oxford nanopore sequencing

Development of nanopore-based sequenging technologies, led by Oxford Nanopore Technologies (ONT)
marked a significant departure from traditional ‘sequencing methods. Oxford¢Nanopore sequencing
directly reads the change in curreht on,a membrane caused by passing,of DNA or RNA'melecules through
nanoscale protein pores. In this method, the changes in ionic current aresmanitored as the nucleic acid
moves through the nanepere, with.each nucleotide causing a distinet.disruption in the current. A single
flow cell can have up to 48000.nanopores in 24000 wells (Promethl@N) allowing for real-time, single-
molecule sequencing [79] . The/biggest obstacle in obtaining,usable’sequencing data from flow cells is the
post processing of the basecalling step. Unlike, other sequencing technologies that depend only on the
sensitivity of the light array, and are therefore computationally simple; obtaining accurate nucleotide data
from, slight.current changes in nanopore sequencing'is much more gomputationally intensive. For these
purposes, specialized machine learning, algorithms, called neural networks, must be trained and
developed on known sequences before anysequencing data is generated [80]. With these advanced
models, the basecalling error, whichwas 5-10%'5 years ago, has dropped to <1%, making nanopore
sequencing a promising method for de novo genome assemblies at the telomere-to-telomere level. The
key feature of ONT sequencing that enables such high-level assemblies is its ability to produce
exceptionally long reads, often exceeding 100 kilobases, with the longest ever reported being 4.2Mb [81],
allowing for complete coverage of centromeric regions with one or more reads, as was the case with the

recent T2T assembly of H. sapiens chromosome X [82]. In addition, ONT sequencing offers
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flexibility/portability and high throughput, with devices such as the compact MinlON or the high-
throughput PromethlON. Since only native DNA passes through the pore and this DNA can be modified in
many different organisms and acts as an epigenetic regulator of gene activity, researchers have developed
various algorithms to recognize these modified bases. Currently 5mC,"ShimmC, 6mA/[83] are officially

supported by the ONT and many other modifications are currently beifig developedyby both Oxford

Nanopore and independent researchers.
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Figure 1.9 Schematic representation of Oxford Nanopore sequencing and subsequent basecalling, adapted from
[84].

1.2.5Wlodern assemblers

Traditional genome assembly approaches using short read sequences such as those generated by lllumina
have long been the foundation for genome assembly. Assemblers such as ALLPATHS-LG, Velvet, and
SOAPdenovo were developed specifically for lllumina short, relatively error-free reads [85]. However, with
the development of third generation sequencing technologies that generate longer and but up to 100x
more error prone sequencing reads, conventional assemblers and their strategies are no longer effective.

This is mainly due to the fact that conventional assemblers rely on short read lengths to perform efficient
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data processing steps such as indexing and hashing. Furthermore, as read length increases, the number
of potential overlaps grows exponentially, making it difficult to identify the best overlaps in long, noisy
reads [72].

New genome assemblers like Canu, HiCanu, hifiasm and Flye [86]-[89] have been developed to avercome
the limitations of traditional assembly methods when dealing with long-read sequencing.data. There are
several main approaches these assemblers use to address the problems associated with integrating TGS
data. First, assemblers like hifiasm and Canu implement sophistieatedierror.correction algorithms prior to
assembly to reduce the noise and the number of redundant overlaps. Next, OLC based assemblers such
as Canu, Raven and Flye implement some variation ofl hierarchical overlapping, by iteratively filtering
alignments which are less probable, thus reducing the size of the final overlap graph and managing
computational demands more efficiently. Additionally, they employ memory-efficient data structures and
algorithms, such as minimizers (Canu), FM=index (Elye), or in case of Redbean [90], utilizing a,"'fuzzy Bruijn
graph" of larger k-mers (up to 256), drastically reducingthe number of potential overlaps from the reads,
making it less memory-intensive@nd better suitedfor long-read datasHifiasm|[86] contains dynamic data
structures such as Bloom filtérs for faster retrieval of subsequences from generated.graphs and iterative
simplifications of the graphythat'adapt to the sequence data andsprune the graph at each step. This
enables efficient processing of PacBio HiFi sequences by savingand processing only the most important
parts of the graph. These assemblers also feature, modular and parallelizable pipelines that enable
effectives€aling across large data sets and high-performance computing resources. Furthermore, some
of these assemblers suchas hifiasm, are flexible enough to'operate in,hybrid modes, i.e., combining long
and short reads to leverage the strengths of both, enabling.the accdrate assembly of complex genomes
despite the challenges posed by newer sequencing technologies. However, generating a high-quality T2T
genome assembly from only one sequencingtechnology is not feasible, thus, successfully producing a
high-quality genome assembly requires more complex approaches based on multiple sequencing

technologies.

1.2.6 Hybrid assembly approaches
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These approaches, also called hybrid assembly approaches or hybrid assembly pipelines are based on
integrating a whole plethora of sequencing technologies and algorithms in order to produce the best
assembly possible. Thus, recent versions of hifiasm now incorporate ultra-long nanopore reads, which
enhance the ability to construct more complete and contiguous genomes by using thé longest reads to
span unresolvable gaps. Additionally, scaffolding techniques, such as HifC contact maps‘and BioNano
optical mapping, play a crucial role in refining and organizing high-quality. contigs by providing structural
information that improves the overall assembly and several algorithms such as.YaHS and AllHiC [91], [92]
leverage this in order to create chromosome level scaffolds from cantigs..\However, the best example of
such holistic integration of multiple sequencing approaches| is verkko [93], which represents a
standardized pipeline used in human T2T assembly by combining ONT, PacBio HiFi and Hi-C data from the
beginning of the assembly process iteratively building the final assembly.

As an example of the integration of these technologies, several large sequencing projects have been
launched in recent years. These include 'several notable initiatives. The Earth BioGenome Project. (EBP) is
a large project to sequence thefgenomes of all.eukaryotic species @n Earth using TGSitechhologies to
capture the complex and repetitive regions that are often missed by short-read sequencing [94]. Another
important project is thesGenome 10K Project, which aims to sequencesl0,000 vertebrate genomes [95].
This projectauses TGS methods toiincrease the resolution,of genome assemblies and improve the scientific
understandingf.vertebrate evolution. The Darwindiree ofilife project [96); which focuses on sequencing
the genomes of all'eukaryotic species in the UK and Irefand, is also,using TGS technologies to produce high
quality, contiguous gename assemblies.

In‘additionphybrid assembly approaches often use existing lllumina<based chromosome assemblies as a
scaffold on which new, high-quality contigs are assembled and aligned using third-generation sequencing

data and advanced algorithms such as RagTag)I GS-GapCloser and Liftoff [97]—[99]

1.2.7 Bioinformatical analyses of satDNAs

The study of satellite DNA (satDNA) evolution and organization in genomes has advanced significantly
through the development of specialized algorithms and sequencing methodologies. The basics of these

algorithms involve de novo detection and analysis of repetitive sequences within the genome, allowing
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researchers to identify, classify, and study satDNA elements with greater precision. Commonly used
algorithms for analyses of satDNAs sequenced data are; Tandem Repeats Finder (TRF) [100], which detects
and analyzes tandem repeats based on nucleotide sequence alignment; ULTRA/A101], which extends
detection capabilities to more complex repeat structures with higher sensitivity; and TRASH [102], which
combines alignment-free approaches with machine learning to classify répetitive DNAseguences from
large genomic datasets. One of the most important algorithms for de novo satDNA detection is TAREAN
[103]. This algorithm employs a graph-based sequence clustering approachhusing raw Next-Generation
Sequencing (NGS) reads. TAREAN works by iteratively clustering the ‘reads and constructing directed
graphs, followed by de Bruijn graph construction from all k-mers present in potential satDNA candidates.
Finally, it generates a consensus sequence representingithe identified satDNA. In recent years, the
combination of TAREAN and low-cost NGS methods has led to the discovery of numerous complete
satellitomes across a wide range of eukanyotic species[104]—[107].

To gauge the evolutionary background|of satDNA, résearchers employ a range’of bioinformatics and
comparative genomics methodsé One widely used approach is the cahstruction of evelutionary trees or
phylogenetic analyses (as seénin [108]), which map the relationships between satbNA sequences across
different species. Theseranalyses help to identify conserved satDNAsfamilies, track their amplification or
contractionp.and uncoverdthe #volutionary pressuresathat shape their distribution. However, these
methods also<ave limitations; particularly whengt, comeésito resolving recent evolutionary events or
dealing with the rapid diversification and turnover of satDNA sequences, which can lead to a loss of
phylogenetic relationships Additionally, the repetitive and highly“mutable nature of satDNA makes it
challenging,to accurately reconstruct their evolutionaty history, as homologous relationships can be
obscured by sequence divergence and structural rearrangements.

Advances in sequencing and genome assembly. have significantly pushed the boundaries for high-quality
telomere-to-telomere assembly and'comprehensive satDNA detection. Notable achievements include the
first complete assembly of the human X chromosome in 2020 [82], followed by the complete assembly of
the human genome in 2022 [5]. These milestones were complemented by the first complete decoding of
A. thaliana in 2021 [3] and of Z. mays in 2023 [109]. Even more complex challenges, such as the attempt
to resolve holocentromeric root-knot nematodes (Meloidogyne spp.) in 2024, come close to chromosome

resolution of very complex assemblies with many different and abundant satDNAs [110]. These successes
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have been made possible by the use of advanced sequencing technologies such as long-read sequencing,
optical mapping and improved bioinformatics tools, which have enabled researchers to assemble
genomes with remarkable accuracy and continuity.

The advances provided by these assemblies have allowed new insighthinto ‘centfomeric satDNAs,
previously thought to be too complex due to repetitiveness to analyze completely. Inthelargest study of
the human centromeres to date, [111], it was discovered that satellite repeats make up 6.2% of the T2T-
CHM13 human genome assembly, with a-satellite repeats«representing..thé largest component,
constituting 2.8% of the genome. By investigating the sequence relationships of a-satellite repeats across
individual centromeres in newly sequenced genomes,.it was found genome-wide evidence that human
centromeric satDNAs evolve through a process known as “layered expansions.” In this mechanism, distinct
repetitive variants arise within centromeric regions and expandithrough successive tandem duplications,
while older, flanking sequences shrink and diverge,over time.

Similarly, studies of centromeres in Arabidopsis|species using new TGS assémblies have revealed
remarkable inter- and intra-spegies diversity anddnechanisms of seqédence diversification [4@]. Research
involving 68 populations acfess A. thaliana and A. lyrata demonstratedithatsArabidopsis centromere
repeat arrays are embedded,in linkage blocks, despite ongoing internahsatellite turnover. This finding is
consistent awith the ideasthataunidirectional gene caenversion or ufiequal crossover between sister

chromatids contributes to satDNA sequence diversification'in Arabidopsis eentromere.

132/ ribeliumibeeties

1.3.1\#tibolium castaneum as a model organism

Tribolium castaneum, the red flour beetle;shas established itself as one of the most important model
organisms in genetic and developmental research due to its advantageous features, such as its well-
characterized RNA interference (RNAIi) system and its comparative genetic insights, which often offer a
more nuanced representation of gene function and evolution than other insect models like the most
widely experimented species D. melanogaster [112]. Additionally, it was the among the first sequenced

and assembled insect species, second only to D. melanogaster, with the first complete genome sequence
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published in 2008 [113] and subsequently updated several times, with the most recent Tcas5.2 genome
assembly published in 2020 [114]. For assembly of Tcas5.2 authors used large-distance jumping libraries
and BioNano Genomics optical mapping to resolve problems with the previous yersions and RNA-seq
reads from different life stages producing the most complete gene set of T. castanedm to date, OGS3.
Despite the exhaustive efforts, the complete genome sequence of T. castaneum isstill missing almost 25%
of its experimentally confirmed genome size [115], thus challenges remain, particularly in accurately
representing repetitive regions, including satDNAs, which were estimatedtorcomprise up to 42% of the

genome [116].

1.3.2 SatDNAs of T. castaneum

The TCAST satellite DNA is a major satDNA jin the genome of T. castaneum, makingyup 17% \of its total

genetic content. This satellite DNA consists of @ monomer 360 base pairs (bp) long, characterized by a
high A+T content (73%) and lacking significant internal substructures, whichysuggests arrelatively simple
repetitive sequence. Through fluoreseent in situ hybridization (FISH), TCAST was shown to be distributed
uniformly inthe (peni)centromeric heterochromatin regions of all 10 eghromasomes of T. castaneum [117].
In addition, chromatin immunoprecipitation experiments andimmunofluorescence (IF)-FISH have shown
that TCAST associates'with cCENH3, a variant/of.the histene H3 protein that is specific to centromeric
chromatin, suggesting an important role for TCAST'may play‘in'centroamere function [118]. The structural
organization of TCAST main satellite was found to organized in HOR organization, similar to the a satellite

DNA in H. sapiens [119].

26



L B

LGX LG2 LG3 LG4 LG5 LG6  LG7 LG8 LG9 LG10

Figure 1.10 Karyogram of T. castaneum chromosomes together with the distribution of TCAST main satDNA with
TCAST transposon-like elements (blue) and TCAST satellite-like elements (red). Visualization from [37]

Apart from TCAST, about 42% of the T.[castaneum genome is composed of repetitive elements, which
include transposable elements andrether satellite DNAs [116]. Among thisf approximately/ 4% of the
genome consists of euchromatic satDNAs;, distributed among nine distinet families (Cast1-Cast9). These
satDNAs are significantly underrepresented with 0,4% abundance in the reference Tcas5.2 genome
assembly. FISH experimentschave indicated that these nine satDNA families localize almost exclusively to
non-centromeric regions of the/chromosomes [120]. Regarding the&tructure of these satDNAs, there is a
notable correlation,between the monomer length and the number of monomers in arrays, with a
predominance of 170 bp monomers in longer arrays. Analyses have also revealed a periodic distribution
of'A or T tracts (4-+10 nucleotides) within these satDNAs, suggesting that unequal crossing over, a process
predicted by computer simulations, plays.a role in the homogenization of longer arrays. In addition to the
9 abundant satDNAs, recent research has identified 46 novel satDNAs that together comprise 1.2% of the
genome[121]. These newly discovered sequencesiare predominantly 140-180 bp or 300-340 bp in length
and, like all T. castaneum satDNAs, are alsoshighly enriched in A+T content, ranging from 59.2% to 80.1%.
Many of these satDNAs are organized into short arrays, often not exceeding five consecutive repeats,
raising questions about their role in the genome and whether are these sequences merely "seeds" for
future tandem expansions, or are they already established throughout unassembled genomic regions.
This remains an open question, and further assembly and analysis will be necessary to fully elucidate the

genomic landscape of T. castaneum. Despite significant insights into the composition and structure of the
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euchromatic satDNAs, the need for a new continuous assembly is crucial to properly understand the
evolutionary dynamics and mechanisms of propagation. This is due to the fact that many satDNAs are
missing or incomplete in the current genome assembly, limiting the ability to analyze their full structure
and genomic context. Therefore, considering genome gaps and the potentialef nanopore sequencing new
T. castaneum assembly based on ONT long-read sequencing, enriched inthe repetitive regions, could be

an excellent platform for global and in-depth analyses of the dominant satDNA fraction in euchromatin.

1.4 Isolation of high molecular weight DNA

The most critical factor for successful Nanopore long-read sequeneing approach is extraction of high
molecular weight (HMW) DNA of sufficient purity and quantity. Unfortunately, this step, which is a
prerequisite for the successful sequencing offleng fragments with a nanopore, is very difficult and often
requires optimization for a specific organism. High molecular weight (HMW) DNA refers toiiselated DNA
fragments that are significantly longer and of higher quality compared to typicallgenomic DNA extractions
such as those used by NGS sequencing technologies. Main characteristiec,of HMW DNA'is its length, that
often exceeds 50 kilobases (kb)@and can sometimes span into the megabase (Mb) range [122]. The second
feature is the quality 6f HMW DNA, which affects the efficiency and accuraey of'downstream applications
and allows for minimal.degradation during various experiments. There are various methods to gauge
isolated HMW DNA lengthrand quality, such as pulsed-field gehelectrophoresis (PFGE) for size estimation
and using fluorometriciassays or spectrophotometry for purity ‘and concentration measurements using
the A240/A260 and A220/A240 absorbance ratios. There are also specialized instruments for performing
integrated length and quality checks the Agilent TapeStation or Bioanalyzer [123], which provide detailed
fragment size distribution profiles, ensuring that the isolated DNA meets the stringent requirements
needed for advanced genomic analyses.

The isolation of HMW DNA has evolved significantly since the first protocols described in 1973, which laid
the foundation for its use in various genomic applications [122]. One of the earliest uses of HMW DNA
was in genotyping, where the length and integrity of the DNA allowed for more precise identification of
genetic variants across large genomic regions [124]. Furthermore, HMW DNA is crucial in structural
variation studies, particularly using technologies like optical mapping, which rely on large, intact DNA

molecules to visualize and characterize genomic rearrangements, insertions, deletions, and other large-
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scale variations [125]. The importance of isolating HMW DNA has grown exponentially with the advent of
third-generation sequencing technologies where high-quality HMW DNA is essential for these
technologies to function optimally, as fragmented or degraded DNA would result in; shorter reads,
increased error rates, and reduced coverage of critical genomic regions [126].

Current commercial protocols for the isolation of HMW DNA, as offereddby companiesisuch as Qiagen,
Thermo Fisher and Circulomics, typically rely on techniques such as salting out, sphenol-chloroform
extraction, separation by magnetic beads and column-based purification. Circulomics Nanobinding kit, for
example, uses nanomagnetic disk technology that enables gentle binding and release of DNA, minimizes
shear and ensures high purity and yield. The E.Z.N.A.2 HMW DNA kit uses a combination of optimized
salting-out and column-based protocols in which DNA is selectively bound to a silica membrane within the
column in the presence of chaotropic salts. The Qiagen Genomicstip, on the other hand, uses a technology
based on anion exchange resins that gently binds BNA through ionic interactions. [127]

Although existing HMW extraction protocolsfattemptito address the unique redquirements of different
species and cell types, a variety/of problems remain, particularly when dealing with hard tissue, whole
organisms and samples with®high levels of interfering substances. Common reasens.for HMW protocols
failing to deliver sufficiently,long DNA molecules include shear forcesyduringiextraction due to forces
during pipetting, mixing of centrifugation, incompletescell lysis andshuclease contamination, and the
presence of cofitaminants such/as polysaccharides,dipids andisecondary metabolites [128]. Consequently,
there arefnumerous, modifications of HMW pextraction protoeols, often focusing on one group of
organisms, tissuedypesoneven cell lines [126], and the transferability,of these protocols to other species
or cell types without major changes is often not so straightforwardand requires careful optimization of
lysis conditions, buffer compositions and mechanical digestion parameters to accommodate the specific

biological and chemical properties.of the new samples.
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2. Aims and hypothesis

Satellite DNAs (satDNAs) are one of the most abundant repeated sequences and the fastest evolving part
of the eukaryotic genome. To date, studies have been primarily focused /an satellite, DNAs in
(peri)centromeric heterochromatin. Although there is clear evidence that some roles have been assigned
to satDNAs, primarily in centromere structure, understanding of their organization, evolutionary
dynamics, and molecular mechanisms driving their spread across the genome, especially in euchromatic
regions, is still rather limited. One of the main reasons for theurrent lack of global and in-depth studies
of satDNAs is certainly the fact that satDNAs are the mostidifficult part of the genome to sequence and
assemble, and therefore they are underrepresented of even absentinthe best genome assemblies.

The main objective of this work is investigation of evolutionary.dynamics, mechanisms of propagation and
transcriptional potential of ten different euehrematic satDNAs abundant which represent even 4,6% of
the genome of insect model organism T. castaheum. First, the most contiguous genome assembly of T.
castaneum to date with the significant improvement in the representation of the repetitive genome
portion will be generated using Oxford‘Nanopore long-read sequencing.ilo this end, thehigh-molecular-
weight (HMW) DNA of appropriate quality'and length for Nanopore sequencing, which is essential for
accurately assembling the complete euchromatic satDNA regionsfwill be optimized for T. castaneum. The
hypothesisis that a news'enhanced genome assembly will provide an excellent platform for studying the
organization and evolutionary dynamics of euchromatic satDNAs."Comprehensive analyses of the new
genome will also shedilight on how these eudchrematic satDNAsyspread and diverge across different
regions of the genome focusing on their relationship te genes.and other repetitive sequences. Finally, the
effect of recombination on the expansion and spread ofithe satDNA arrays will also be investigated.
Another important aspect of this research is the investigation of the transcriptional potential of satDNA
during embryogenesis and development. As there is increasing evidence for satDNA transcription in
different species, it is hypothesized that transcribed satDNAs in T. castaneum may play a significant role
in genome regulation and other essential cellular functions. For this purpose, the expression profile of ten
euchromatic satDNAs DNAs in T. castaneum will be determined to reveal the patterns of their expression
throughout different developmental stages, from embryogenesis to later life cycles.

These results will provide a deeper understanding of how euchromatic satDNAs contribute to genome

evolution, regulation, and structural integrity and shed light on their broader influence on the genome.
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3. Material and methods

3.1 DNA isolation and sequencing

Insect samples
Laboratory cultures of the red flour beetle, T. castaneum, specifically the highly.cultured Georgia 2 (GA2)

strain, were routinely maintained in whole wheat flour, supplemented with whole rye flour and oats. The
rearing conditions were optimized for faster reproduction, set at.32 °C'and 70% selative humidity, and
kept in darkness. Different life stages of the beetles were separated by sieving through a 0.71-mm sieve,
and individual beetles were picked with tweezers in differént quantities in‘'order to achieve best DNA yield.
Therefore, to ensure efficient DNA isolation for genome assembly, larvae and pupae were collected in

sufficient quantities, with 200 mg of pupae and 500 mg of larvae used for each DNA extraction.

Nuclei isolation
The nuclei were isolated following a modifieda/ersionof the Brown and Colemanrotocol [129]. Several

changes were made to optimizerthe,process. Instead of using -80,°C, thefmortar_and spatula were
precooled with liquid nitrogen. Fresh NIB buffer was prepared immediately before use, and an additional
washing step was introduced for the isolated nuclei. Centrifugation_times were adjusted, and standard
plastic tubes were used for.€onvenience. To begin, 20 mL of freshly prepared NIBbuffer per reaction was
chilled on ice. Fhe mortar and spatula were filled twice with liquidditrogen to ensure adequate cooling.
During the.second nitrogen evaporation, the sample, as,specified in Table 4.1, was added to the mortar
and ground into afine‘powder using increasing pressure andispeed. The powder was then scraped into a
50'mL tube containing 8 mL of chilled NIB buffer using the precoocled.spatula. The tube was gently swirled
to mixthe suspension, and if any residuestuck to the tube'walls, a wide bore tip was used to flush it down,
ensuring maximum efficiency. Care was taken to avoid shaking the tube, as this could disrupt the
suspénsion. The mixture was filtered through a 100 um cell strainer into a new chilled 50 mL tube. Next,
the solution was divided into six chilled 1.5'mL tubes and centrifuged at 100x g for 30 seconds at 4 °C. The
supernatant was carefully transferred into six new tubes without disturbing the loosely attached pellet of
cell debris. These tubes were centrifuged again at 1800x g for 3 minutes at 4 °C to pellet the nuclei. After
the supernatant was discarded, any remaining liquid was removed with a pipette. The compact nuclei
pellet was resuspended in 1 mL of cold NIB buffer using a wide bore tip, being careful not to introduce air
bubbles into the mixture. This step was repeated to ensure thorough resuspension.

31



DNA isolation
Lysis buffer was prepared by adding 500 uL of protease or 95 uL of proteinase K, along with 10 uL of RNase

A, to 5 mL of G2 buffer. After the final centrifugation, the nuclei pellet was resuspended in,800 uL of G2
buffer. Complete resuspension was achieved by pipetting gently with a wide bore tip, again taking care to
avoid introducing air bubbles. The tubes were incubated at 50 °C for 1 hourat 300 rpm in a_thermomixer,
with intermittent gentle inversion or pipetting to ensure complete digestion. The properly digested nuclei
had a visible, stringy, milky texture. If clumps of nuclei remained,they werexfurther broken by additional
pipetting. The genomic DNA was extracted using a Qiagen Genomic Tip. 100/G column, following the
manufacturer's instructions with slight modifications. Pressure was applied at all stages to ensure efficient
flow, and the QF buffer was prewarmed. The column was equilibrated with 4 mL of QBT buffer, and the
digested sample was applied to the column. The column waswashed twice with 7.5 mL of QC buffer, and
DNA was eluted with 5 mL of prewarmed QF buffer. The eluted DNA was precipitated byadding 3.5 mL of
isopropanol at room temperature. The solution was allowed to stand for 30 secends, during which the
upper phase turned whitish. Thetlibe was inverted multiple times, causing white strands/of DNA to
appear. These strands formed a sticky DNA "jelly," which was then spooled ento a thin glass rod. The
spooled DNA was transferred to a,1.5 mL DNA LoBind tube containing 100 pL of elution buffer. After
incubation at 50 °C for up ta'2 hours, the DNA was mostly dissolved. It was then left overnight with gentle

shaking to achieve full rélaxation before being stored at 4 °G, whereit remained stable for several months.

Assesmeditofiqualityfand length
DNA cancentration\was consistently measured using both fluerometric and spectrophotometric methods.

Thenquality, of the DNA" was evaluated with a spectrophotometer, with acceptable A260/280 and
A260/230 ratios being around 1.8 and 242, respectively, in line with ONT's official guidelines. The length
of isolated DNA, sheared DNA, and the wprepared library was assessed using pulsed-field gel
electrophoresis (PFGE). DNA fragments were separated on a 1% agarose gel in 0.5x TBE buffer, run at 6
V/cm, 14 °C, with a 120° included angle,"and switch times ranging from 1 to 10 seconds over 14 hours
using a Bio-Rad CHEF-DR Il PFGE system. The gel was subsequently stained with 1 pg/mL ethidium

bromide solution at room temperature for 30 minutes on a shaker.
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DNA shearing and size selection
The homogenized DNA solution was sheared 10-30 times using a 30-gauge needle. Its concentration was

measured in triplicate and adjusted to 150 ng/ulL using TE buffer or water. For size'selection, the Short
Read Eliminator (SRE) XS kit was applied according to the manufaGturer’s linstructions. The final
resuspension was carried out in 50 plL of EB buffer from the SRE kit, and the;eoneentration was measured

twice to ensure reproducibility.

Sequencing and basecalling
The Oxford Nanopore library was prepared using the SQK-LSK110 kit following the manufacturer’s

instructions with specific modifications. The sheared and purified DNA was used for library preparation at
double the amount recommended by the ONT protocol. Additionally, all elution and incubation times
were extended to twice the suggested duration to prevent library loss and increase the final
concentration. This ensured the library econcentration was over 100 ng/uL, allowing multiple loads on
MinION flow cells. The flow cells were washed and releaded 2-5 times to maximize data output. A total
of twelve MinlON flow cells (versions 20.3.47and 94.1) were used for method development and assembly
data generation, resulting in@cumulative data output of 89.9 GB with an N50 of.20.1 kb. The sequencing
was managed using the.Oxferd Nanopore MinKnow software versions:20.10.3. Basecalling was performed

using Guppy.v5.0.1.

3.2 Genometassenibiy

Assembly
The basecalled reads were utilized in the assembly process, using Canu v2.2 [87], with parameters

specified in Table 3.1. Adjustments were made accordihg‘to Canu‘documentation to account for the
genome's high repetitiveness [87] and the elevated AT content in the reference Tcas5.2 genome assembly
[114]./To manage computational demands andithe small size of the T. castaneum genome, reads were
filtered to those greater than 20 kb.“The Canu assembly was carried out using the Isabella computer

cluster at the University Computing Centre (SRCE), University of Zagreb.

Contig placement
To arrange the Canu contigs into chromosomes based on the Tcas5.2 (GCF_000002335.3) assembly, pre-

existing gaps in the Tcas5.2 assembly needed to be bridged. This was accomplished using TGS-Gapcloser

software [98] with default gap-filling settings and the corrected reads from the Canu pipeline. Gap filling

33



addressed small and medium gaps in the Tcas5.2 assembly, preventing interruptions in the long contigs
generated by Nanopore sequencing. After gap filling, the RagTag software tools [97] were used to further
refine the assembly. Canu contigs were used as the query sequence, while the gap-filled Tcas5.2 assembly
served as the reference with the “scaffold” parameter. RagTag aligned and placed theCanu contigs onto
the gap-filled Tcas5.2 assembly, incorporating previously missing repetitive regions andifilling gaps with
successfully aligned contigs. This approach helped integrate repetitive elements absent from the original
Tcas5.2 assembly. RagTag mapped high-confidence genomic s€gions ontonchromosomes and placed
contigs ending or beginning with repetitive regions into gaps, revealing previously unknown regions. The

result was an unpolished assembly that served as a template for subsequent polishing.

Polishing and gene completeness analysis

To enhance the assembly quality and reduce the error rate, correction of the TcasONT assembly based on
the Canu contigs was performed. Two rounds of RACON [130] polishing were carried out using short reads
(<20 kb) that were excluded from the initial@ssemply. " These excluded reads, totaling approximately 50
Gb, provided significant additional genemic‘infermation. Polishing fellowed the RACON doetmentation,
which involves mapping the‘reads onto the assembled genome with ‘minimap2s{31] and using the
mapped reference reads for, polishing. The polished assembly,snamed TcasONT, was then used for
downstreamhanalysis. Benchmarking Single Copy Orthaelegs (BUSCO) J132]@nalysis was conducted using
the BUSCO v5.0.0.module on the Galaxy web platfarm (uségalaxy.org), with the same settings as listed in

Table Mafapplied for all assembly validations.

Repeat\@hnotation
RepeatMaskerya widely used tool for identifying and masking repeat'elements in target sequences [133],

was employed to obtain GFF/GTF formatted data detailing the position and orientation of classified
RepBase repeat elements. This dataprovidedinformation on the quantity, size, and distribution of various
repeat elements within the genome assemblies. Assemblies were annotated with repeat elements using
RepeatMasker on the Galaxy web platform (usegalaxy.org), utilizing repeat data from the latest RepBase
database (RELEASE 20181026) and the “Hexapoda” species listing for clade-specific repeats.
RepeatMasker was also rerun for the Tcas5.2 assembly to update repeat annotations, as the original

annotations were based on an earlier version of the RepBase database. For quantifying three classes of
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satDNAs (with defined monomer lengths >50 bp, 50-500 bp, and >500 bp) in the TcasONT and Tcas5.2

assemblies, the Tandem Repeat Finder (TRF) program [100] was used with default parameters.

Table 3.1 Command line arguments used in key steps of assembly generation.

STEP SOFTWARE VERSION PARAMETERS
SEQUENCING MinKnow 40350 GUI
AND Guppy 5.0.11 --config dna_r10:3n450bps, hac.cfg -x cuda:0
BASECALLING
ASSEMBLY AND Canu 2.2 genomeSize=200m minReadlLength=20000
POLISHING
corMaxEvideneeErate=0.15 ovIMerThreshold=500
gridEngineResourceOption="- mem=MEMORY"
TGSGapfiller v1.0.1 --thread 14 --min_match 500 --ne
RagTag v2:1.0 scaffold -f 50000 -t 16
minimap2 r1101 -ax map-ont
RACON v1.4.3 default
ANNOTATION Liftoff 37043 -g 52.gff -chroms -copies
RepeatMasker 4.0.9_p2, Galaxysettings: "repeat source species = hexapoda"
‘output=ggf"
BUSCO 5.0.0 Galaxy settings (lineage=Insecta, Augustus
species=Tribolium castaneum)

Transfer of gene annotations
To map genes in Canu contigs (filtering) and.the TcasONT assembly, the LiftOff package [99] was used in

conjunction with gene annotations from the Tcas5.2 assembly. LiftOff first maps the entire TcasONT
assembly to the reference Tcas5.2 and then aligns the gene sequences from the Tcas5.2 reference to the
target TcasONT based on these overlaps. Although this method is limited in finding potential new genes

in the improved TcasONT assembly, it ensures that the comprehensive annotations of the Tcas5.2
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assembly, based on an extensive RNA-seq database and gene prediction methods, are accurately mapped

and transferred onto the TcasONT assembly.

3.3 Identification and analysis of satDNAs

Identification of satDNA repeats
Satellite repeats within the genomes were annotated usin the standalone NCBI'BLAST algorithm and the

metablastr package [134] in R. The subject sequences were the analyzed assemblies (Tcas5.2 and
TcasONT), and the queries were the previously characterized £ast1-Cast9 [120]. All of the detected hits
were retained in a database of hits, and following the analysis, the database was filtered to identify trends

and arrays for Cast1-Cast9.

Analysis of satDNA arrays
All Cast1-Cast9 monomers were identifiedsffom the BLAST result table and filtered decording to the

parameters described in Figure 4.10. To‘avoid fragmentation due to potential short sequence,variations
within the arrays, it was essential to.establish optimal parameters for satDNA arfay detection. Total arrays
for each Cast satDNA were analyzed to determinethe best neighboringwindow length thatwould connect
continuous repeating monomers into a single array. This method was implementedto account for errors
and insertions and tofaccurately link.all monomers of a given satgllite. Basice filtering was then performed
to define arrays and remove short, interspersed monomers using custom parameters for each satDNA
family to ensurethat arraysi€ontained at least 3 repeat.units for each satDNA, except for the Cast2’ array
(Cast2 monomer interspersed with the newly discovéred sequence €ast2’), which included three different

length menomers,; with the 1100 bp Cast2’ mixed with,170 bp Cast?2.

Detection of array edges
To accurately determine the edges of Castl-9 arrays in the genome, a refined strategy was employed.

Traditional monomer detection methods, which, typically rely on a fixed cutoff based on monomer
similarity, often struggle with the degenerate'nature of array edges, making it challenging to identify small
homology regions and junctions. Therefore, several steps were taken: first, a database of all monomers
for each satDNA was created, along with a database of all arrays and their flanking regions (500 bp). K-
mers of 32 bp were extracted from both the monomers and the extended arrays with flanking regions.
For each position within the extended array, the closest k-mer match from the monomer database was

identified based on Hamming distance, and the score was recorded. A rolling mean position score was
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then calculated by averaging scores from +5 positions. The true edges of the arrays were determined by
identifying the minimum and maximum positions for each array where the distance was less than 5. Based

on these newly defined edges, surrounding and microhomology regions were extracted.

Analysis of gene content
A 50 kb region upstream and downstream of each Cast1-Cast9 array wasiSelected.to define gene profiles

around these arrays. In each 100-kb region (50 kb upstream and 50 kb downstream), the area was divided
into 100 bins of 1 kb each. The number of exons was countedfin eaeh bin tosprofile genes around the
different Cast1-Cast9 arrays. Expected exon densities were determined by calculating the median, 1st
quartile (1Q), and 3rd quartile (3Q) exon densities acress the genome in 100-kb sliding windows using a

custom R script.

Multiple sequence alignment and clustering
MAFFT [135] was used to perform multiple sequence alignments of Cast1-9 monomers in‘the assembly.

After alignment, the “F81” genetic distance gvolutionary model from the ape package [136] was'applied
on the alignments to generate geneticdistance matrices. These matrices\were then used foriPCA analysis,
which was conducted using the PCA funetion from the FactoMineR “package [137]. The first two

dimensions of the PCA'resultsifor each satDNA were visualized using ggploet2 [138].

Visualizations and statistics
All plots and calculations were generated in R using custom data“processing notebooks. In addition to

standard libraries, theicirclize package was employed toncreate circular visualization plots illustrating
global ‘genome patterns, To construct the complex heatmaps used for analyzing the similarity of
neighboring regions, the ComplexHeatmap package was utilized. A graph-based visualization method was
implemented to tackle the low variationiamong satDNA monomers and their tendency for intra- and
interchromosomal exchange, as séeh.in the mixihg in PCA plots. To generate the graph networks, for each
monomer in each array, we identified thefiveclosest monomers outside the same array using the dist.dna
function from the ape package in R, applying the “F81” genetic distance model. The resulting data was
visualized as a graph network with the networkD3 package. In these visualizations, clustered and
connected nodes represented potential satDNA arrays involved in frequent exchange, while disconnected
nodes suggested lower interaction. Homology in 20 bp regions flanking the arrays was visualized with the

ggseqlogo package, following alignment using MAFFT.
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3.4 Extrachromosomal circular DNA

Extrachromosomal circular DNA on agarose gels
Two-dimensional agarose gel electrophoresis was conducted following the method described in [139],

with several modifications. Total DNA was extracted from 500 mg of T. castaneum pupae using standard
phenol-chloroform extraction and dissolved in Tris-EDTA buffer (pH 8.0): The DNA ‘coneéntration was
measured using a Qubit 4 fluorometer (Invitrogen). To shear the linear DNA, 20 ug of.the extracted DNA
was passed through a 0.33 mm hypodermic needle 25 times«#Since the linear'double-stranded DNA
(dsDNA) fragments greatly outnumber potential extrachromasomal‘cireular DNA (eccDNA) molecules in
the total genomic DNA (gDNA) isolate, the gDNA was treated with exonuclease V to selectively degrade
the linear dsDNA. Exonuclease V (New England Biolabs) digests linear dsDNA from both the 5" and 3’ ends.
This overnight digestion at 37 °C was intended to remove as much linear dsDNA as possible while
preserving the circular DNA. The reaction was halted by adding 11 mM EDTA (pH 8.0),followed by
incubation at 70 °C for 30 minutes. The DNA was then purified using the Monarch®€R & DNACleanup Kit
(NEB). The first dimension of electropheresis was4un in 0.7% agarosefgel in 1x TBE bufferat 0.7 V/cm for
18 hours. After this, the gel was stained in 4x TBE buffer containing 0.2 pug/mL ethidium bromide. A lane
with the separated DNAwwas excised, and 1.5% agarose containingn0:2 pg/mk ethidium bromide was
poured around the lane, positiohing it at a 90° angle relative to the first run. The second dimension of

electrophoresis was carried out at 4 V/cm for 3 houts.

Southerfi blot*hybridization
To ensure efficient DNAtransfer from the agarose gel to the membrane, the gel was first rinsed in 0.25M

HCl for 30:minutes, followed by a 30-minute rinse in 0.4M\NaOH. The DNA was then transferred overnight
onto a positively charged nylon membtane (Roche Life Science) using capillary transfer. Hybridization
probes for Castl, Cast2, Cast5,«sand Cast6 satellite DNA were labeled with biotin-16-dUTP (Jena
Biosciences) through PCR amplification of cloned plasmids containing the respective satellite DNA

sequences. Specific primers were used for each satellite:

e C(Castl: 5" AAGTCGGCTACGACTAACCGTTC 3" and 5" TTGCAAATTTGGATTCCGCCCGG ¥

e (Cast2: 5" TATACGCAAAATGAGCCGC 3" and 5" AAAGTCGTAGAGCAATGCGG 3’

e Cast5:5 GGTGTTGAAAAGTCATAARTTGAGTG 3’ and 5" AGAGCCGGTGTACACAACATT ¥

e C(Cast6: 5 CGACGCATGGGTCAATCTAAGACA 3" and 5" ATTCGAAACTTTTCAAAAAAATTGG 3.
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Hybridization followed the protocol outlined in [120]. Detection was performed using streptavidin-alkaline
phosphatase and the chemiluminescent substrate CDP-star (Roche Life Science), with visualization

conducted on the Alliance Q9 Mini (Uvitec) imager.

3.5 Small RNA sequencing and analysis

Isolation of small RNAs from life stages
The first step in RNA isolation involved sorting the various life stages of T. castaneum. A 0.71 mm sieve

was used for initial sorting, and beetles were manually picked. Three lifestages (larvae, pupae, and adults)
were sorted, with pupae and adults further separated by.sex; resulting in five distinct samples. For each
sample, only the heads were collected by cutting approximately 30ung of heads (100-200 depending on
life stage) on ice, then immediately transferring them to a'vial.in liquid nitrogen. Total RNA was extracted
using the Quick RNA Miniprep Plus Kit (Zyme). with 30 mg of starting material per reaction, and two
biological replicates were prepared for each/sample. The collected tissue was placed“in,500 uL of
RNA/DNA Shield Solution (Zymo) and homogenized using an electric homogenizeriand pestle. Lysis was
performed with 15 plL of proteinase Kand 30'ul of PK digestion buffer, followed by incubationat 26°C for
2 hours. Subsequent steps followed the manufacturer's protocol, with final elutionin 50l of RNase-free
water (Invitrogen). ARNA“ quantity» was assessed using gel electrophoresis and a Nanodrop
spectrophotometer (3100 ng), while RNA integrity was validated (RIN >9) using the Qubit IQ RNA Kit to

confirm the presence of different RNA sizes.

RNA sequencing
Sequencing was performed using RealSeq Biosciences Inc. (CA, USA) provider. Small RNA library was

prepared with the RealSeq-AC kit and sequenced on an lllumina NextSeq 500 v2 device and High-Output
- SR 75 Cycle with read lengths of 75 pbiin,one direction. Average number of reads passing filter per

sample was 10M.

Public data
RNA sequencing data from Ninova et al. [140] were accessed via the NCBI Gene Expression Omnibus (GEQO)

under accession number GSE63770. The miRNA and target regions were downloaded from iBeetleBase
[141] . Subsequently, these regions were extracted from the Tcas5.2 genome [114], deduplicated, and

mapped to satDNA sequences using Bowtie [142].
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Read mapping and analysis
For read mapping and analysis, all reads—both public and newly generated—were processed by the same

pipeline to insure data compatibility. First the reads were trimmed of adapter using Trim
Galore [143], retaining those longer than 18 nt and applying the —small_r pter and
quality trimming, the reads were aligned to satDNA sequences using
parameters: -p 8 -S --no-unal. The resulting alignments were sorte nd processed using
Samtools [144] with the functions “samtools depth” and “samt er processing of the

(1

alignment files was conducted in R using the Rsamtools pack
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4. Results

4.1 Development of new HMW DNA isolation protocol

The starting point for the isolation of HMW DNA are commercial kits,withspecies/tissue-specific
modifications. The commercial kits and their official protocols that were tested and optimiséd during the
DNA extraction process were the E.Z.N.A kit (Omega BioTek, Norcross, GA, USA), the Monarch HMW DNA
extraction kit for tissue (New England Biolabs), the Blood and Cell«€Culture DNA Mini and Midi kit (Qiagen),
and the standard phenol-chloroform extraction, which were initially: tested for isolation and library
preparation and the final sequencing step. Different problems were encountered that were specific to
each of the available kits. For example, the E.Z.N.A. kit ‘had the limitation that the extracted HMW DNA
was relatively short and often produced DNA less than 50kbinlength; the Monarch kit was found to be
non-reproducible and the DNA had low abSorbanee ratios due to the very mild washing step. The Qiagen
columns were often blocked even at the purest pupal stage as chitin residues reddced yields and lengths,
and the phenol-chloroform extraction, while able‘to produce HMW «f sufficient quality, isvery labour
intensive, and DNA purity asymeasured by absorbance ratios was subeptimal. When this DNA was
introduced into standard-@NT library preparation protocols, clumping.ef magnetic beads and large losses
occurred after each step_of library ‘preparation, resulting in poor guality, downstream libraries with
insufficient readilengths in nanopore sequencing and rapidipore death. Since commercially available kits
could notgpreduce HMW in sufficient quality and quahtity, a-protocol for the extraction of HMW from
purified cell nucleifwas developed that includes a purification.step using commercially available Genomic
Tip columns followed byDNA shearing and size selection.

The optimized procedure was tested onfall T. castaneum developmental stages (larvae, pupae, adults),
along with two other Tribolium species (T.freemani, T. confusum) (Table 4.1). The DNA obtained had

absorption ratios in the proposed range for Oxford Nanopore sequencing (Table 4.1).
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Table 4.1 Results of the DNA isolation using developed protocol performed on different Tribolium species as well
as on their various developmental stages.

Species Stage Starting DNA concentration DNA  vyield Axz0/260  A260/280
material (mg)  (ng/uL) (ug)
T. castaneum | Pupae 200 172 17.2 1.89 1.95
200 130 13.0 1:85 2.14
200 138 13.8 1.84 2.25
200 154 154 1.88 1.78
Larvae 1100 512 51.2 1.87 2.35
Adults 1000 643 64.3 1.85 2.14
T. freemani Adults 1050 327 32.7 1.83 2.24
Larvae 920 540 54.0 1.88 2.05
Adults 620 78 4.7 1.94 2.00
T. confusum Pupae 340 213 12.8 1.87 2.41

Due to the presence of large amaounts of non-cellular material in the.adults, mainly chitin in the form of
the beetle cuticle, and largé amounts of fat and intestinal tissue in the larval DNA, higher amounts of
starting material(>600mg) were required to produee sufficient amounts of HMW DNA, whereas only 200
mg of starting,material was needed for isolation fromdrelativelyapure pupae. The size distribution of the
isolated HMW DNA was analysed by Pulsed Field Gel Electrophoresis,(PFGE). The extracted DNA from T.
castaneum,had the highest number of gDNA fragmentsidistributed between 50 and 150 kb (Figure 4.1a).
The DNA isolated from the pupal stage even showed an additional band at 200 kb. In addition, the same
procedure to isolate HMW DNA was also tested for two congeneric species, T. confusum and T. freemani,
which yielded gDNA with a length ofiup.to 100'kb (Figure 4.1b). To increase sequencing efficiency, library
preparations of sheared DNA were also tested. After shearing, both pupal and larval DNA showed a
reduction in the ultra-long DNA fraction, with most DNA falling in the 30—80 kb range. Further testing of
shear intensity revealed that 30 passes through the G30 needle resulted in the most compact band, with
the majority of DNA still above 48 kb (Figure 4.3c). Notably, gel electrophoresis showed no significant

increase in the abundance of shorter fragments, which is critical for subsequent sequencing. Size selection
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on the sheared DNA had only a slight negative impact on the DNA length in the PFGE, probably due to the

additional centrifugation and handling steps, as shown by a slight downward shift.
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Figure 4.1 Pulsed field gel electrophoresis PEGE performed on isolated genomie DNAmalong with sheared and
cleaned fractions from various develepmental stages of T. castaneum, T. confusum (T. conf),and T. freemani (T.
free) beetles. Lambda DNA(m1)and Extend DNA ladder (m2) used as moleculanweightimarkers. Approximately 1
ug of DNA from each/samplefwas_mixed with loading dye and loaded per wéll. Asgenomic DNA isolated from T.
castaneum at different .developmental stages (L-larvae, P-pupae, A-adults), alongside sheared (30x) and size-
selected fractions.\N represents non-sheared DNA, S isshearedDNA using.a G30.needle, and C is the size-selected
DNA using_the ShortyRead Eliminator Kit XS. B displays genomic'DNA isolated from T. confusum pupae and T.
freemanifadults. C effectiof increasing needle shear passes (indicated byanumbers) on T. castaneum adult genomic
DNA.

4.2 Evaluation of HMW DNA byWanopore sequencing

After‘the newly developed protocalwas tested with PFGE, it was further evaluated on the Nanopore
sequencing platform. An additional modification was introduced by doubling all wait times specified in
the official protocol. The results of the sequencing runs are depicted on Figure 4.2 and Figure 4.3. As can
be seen, the protocol combined with the adjustment resulted in a threefold increase in N50 compared to
the Blood and Cell Culture kit, and a twofold increase in N50 compared to the Monarch kit. The read
length distribution was also improved, when comparing the BCCD length distribution Figure 3a to the non-

size selected output of newly developed protocol Figure 4.3b and Figure 4.3c. The E.Z.N.A. kit was not
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tested, as it had previously produced the shortest DNA fragments. Additionally, the newly developed
protocol showed the best reproducibility in the sequencing runs when compared, with each new

sequencing run producing an equal or better N50 value for the sequenced reads.
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Figure 4.2Violitvplotofiread length distribution of Nanoporé sequencing data using different sequencing protocols,
Blood and Cell Culture BNA Midi kit (BCCD Midi), the MoenarchitHMW DNAwextraction kit for tissues (Monarch), and
the newly developed protocol (Nuclei). Appended numbers represent experimental replicates, with N50 values (in
kilobases) indicated by thenumbers.

An additional step was later introduced which focused onfiltering short reads present in the sequencing
output by using the Circulomics XS shortiread eliminator kit which uses a centrifugation-based size
selection process. This method effectively removed the majority of DNA reads under 10 kb, a crucial step
for improving the quality of sequencing data. Although the removal of these shorter fragments was not
visibly apparent in PFGE, it had a significant impact on the sequencing run. The effectiveness of this size
selection can be clearly observed in the sequencing data, specifically in the length histogram. The absence

of the leftmost peak, which corresponds to the shortest reads, highlights the successful elimination of
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these fragments (Figure 4.3d). This adaptation plays a crucial role in improving the overall performance

of sequencing, as shorter reads usually result in poorer quality and less efficient data output.
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Figure 4.3 Read length distribution graphs Length distribution graphs'show the correlation between genomic DNA
(eDNA) shearing.and size selection in Nanopore sequencing, withycorresponding N50 values displayed in the top
right corner of each graph. A Unsheared DNA B DNA sheared with 20 passes through a G30 needle C DNA sheared
with 30 passes through a G30 needle D DNA sheared with 30 passes through a G30 needle followed by size selection
using the Short Read Eliminator kit.

The cumulative output of Oxford Nanopore sequencing using the new protocol showed stable continuous
growth throughout the sequencing experiment, which can last up to 72 hours. By washing the flow cell
multiple times, with each new wash allowing near-perfect recovery of the pores, five consecutive loads
could be performed within 48 hours, yielding 13.17 Gb of data (Figure 4.4a). The distribution of the Phred

quality score (Q) shows that the majority of reads have a quality score above Q20, which means an error
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rate of less than 1% (Figure 4.4b). There is also a positive correlation between quality and read length,
with the longest reads having particularly high accuracy. In fact, most of the longest reads achieved a
Phred score of Q24, corresponding to an accuracy rate of 99.6%, while the low-quality reads correlated

mainly with their shorter length. This relationship between read length and quality'emphasises the overall

reliability of the sequencing data, especially for the longer fragments.
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Figure 4.4 Summary of Nanopore sequencing fun output. A The cumulative baseioutput.after a 48-hour run on a
MinlON flow cell, involving five consecutive library loads and four intermediate DNase washes. B 2D density plot
showing the distribution®f overall read Phred quality scores and read lengths, where lighter color shades indicating
the higher cumulative/fractions of reads with specific lengths and quality scores.

The sketeh ofthe newly developed protocol canbe seeninFigure 4.5. It is explained in detail in the section
"Material and methods™. Briefly, the nuclear isolation,protocohis based,.on Brown and Coleman's method,
with modifications including the use of liquid nitrogen ta preschill thé'mortar and spatula, the preparation
of fresh NIB buffer immediately prior to use, and the adjustment of centrifugation times. The isolated
nucleipwere carefully prepared with,additional washing steps and the suspension is passed through a cell
strainer. The nuclei are pelleted, resuspended,in G2 buffer with protease and digested at 50 °C to produce
a milky, stringy solution. After digestion, the genomic DNA is purified using a Genomic Tip column,
applying pressure to maintain flow, followed by elution with pre-warmed QF buffer. The DNA is
precipitated with isopropanol, spooled onto a glass rod and transferred to a DNA LoBind tube. The DNA
is then incubated at 50 °C for up to 2 hours for homogenization and left at room temperature overnight

to allow it to relax completely, resulting in a clear, viscous solution. The isolated DNA is stable at 4 °C for
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months. The DNA is then sheared with a 30-gauge needle and size-selected using the Short Read

Eliminator Kit. Quality should be assessed by spectrophotometry, with acceptable absorbance ratios and

DNA lengths checked by pulsed-field gel electrophoresis. For nanopore sequenci
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4.3 Nanopore sequencing and genome assembly of T. castaneu

4.3.1 Nanopore sequencing

The HMW DNA prepared with the new protocol from different life stages was sequenced.ondVinlON flow-
through cells. The summary of the sequencing runs on a total of 6 flow cells is shewn in Table 1. The
sequencing experiments yielded a total of 5,688,065 analyzed readS coveringia total of 89.87 billion bases,
which corresponds to a 436X coverage of the estimated/ 204 MB'genome size of T. castaneum.
Furthermore, the mean read length of all generated reads is 15,799.3 bases with a standard deviation
(STDEV) of 11,872.4 and a mean read length of 11,768 bases. The N50value, a critical measure indicating
the length at which 50% of the total bases are contained in reads of that length or longer, is 20,119 bases,
which means that at least 22x coverage isfachieved at >20kb, allowing proper assembly. . The mean read
quality score is 12.8, with the median read quality slightly higher at 12.9. Regarding read quality»88.9% of
the reads have a quality score greaterthan Q10 (<10% error rate), 654/% excéed Q12 (<6.2%error rate),
and 15.5% surpass Q15 (<3.4% error rate). As for read length distributions, 5,076,810 reads are longer
than 1,000 bases, 4,123;341 reads,exceed 5,000 bases, and 3,395,112 reads,are greater than 10,000
bases. Mostimportantly 945,174 reads are longer than,25,000 bases,and 147,567 reads exceed 50,000
bases. These lofg reads account for a substantial partion ofithe total base count, with 35.29 billion bases
in reads above 25,000 bases and 7.26 billion, bases4in,reads above 50,000 bases representing a 40x
coverage from >50kb reads alone. These statistics of Nanopore output data suggest that any genome

assembly using these reads will be of the highest quality.
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Table 4.2 Summary statistics for Nanopore sequencing sequencing of T. castaneum

Statistic

Mean read length:

Mean read quality:
Median read length:
Median read quality:
Number of reads:

Read length N50:

STDEV read length:

Total bases:

>Q10:

>Q12:

>Q15:

# reads (>= 0 bp)

# reads (>= 1000 bp)

# reads (>=5000 bp)

# reads (>= 10000 bp)

# reads(>=25000bp)

# reads (>= 50000 bp)
Total length.(>=0bp)
Total length (>= 1000 bp)
Totallength (>= 5000 bp)

Value
15,799.30
12.8
11,768.00
12.9
5,688,065.00
20,119.00
11,872.40
89,867,276,950.00
88.90%
65.70%
15.50%
5,688,065
5,076,810
4,123,341
3,395,112
945,171
117,567
89,867,276,950.00
86,515,280,369.00
83,196,677,762.00

Total length (>= 10000 bp) 73,362,556,790.00
Total length (>= 25000 bp) 35,294,400,317.00
Total length (>= 50000 bp) 7,263,554,761.00
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4.3.2 Chromosome scale assembly using a hybrid assembly approach

As mentioned above, the reference genome assembly of T. castaneum (Tcas5.2) cemprises 165.9 Mb
[114]. However, after the removal of placeholders and sequencing gaps, the assembly isireduced to 136
Mb. Considering the experimentally estimated genome size of 204 Mb confirmed by the in silico genome
size estimators CovEst and FindGSE, which estimated the genome size t6 be approximately 204—208 Mb
(Supplementary Table 1), itis evident that 68 Mb (33 %) of the genome is'potentially/missing in the Tcas5.2
reference assembly. Additionally, FindGSE identified a repeat content of 27%, confirming experimentally
determined genome's high repetitiveness. To improve the.assembly, particularly in repetitive regions, our
sequencing data obtained from Oxford Nanopore long=read sequencing and hybrid assembly approach
was utilized. The workflow of the assembly approach used te generate the new T. castaneum assembly
(TcasONT) is shown in Figure 4.6. The Nanopere.reads were initially divided into two categories according
to their length short reads (<20 kb), totaling 52.7 Gb with 258X genome coverage, and long.reads (>20
kb), totaling 36.3 Gb with 178X coverage. The long reads (>20 kb) were then used forthe initial assembly
with Canu. This assembly resulted in 1,479 contigs with a total length'of,.321 Mb and an'N50 of 835.5 kb
(Table 4.3). The longest contig'measured 16.4 Mb. The Canu assembly was approximately 117 Mb larger
than the experimentally estimated genome size of 204 Mb.. Givendthat (peri)centremeric satDNAs, TCAST,
make up 17% of the genome and poses challenges fofaccurate assembly, the additional 117 Mb in the
Canu assemblyis likely due.to these repetitive TCAST arrays.Jo mitigate the negative impact of TCAST
satDNA©ON the assembly, an additional filtering step.was performed. Contigs lacking at least 1,000 bp of
unigue gene-coding sequence were removed, resulting in the successful filtering of 471 out of 1,479 total

contigs representing a total of 223 Mb (Table 4.3).
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Table 4.3 Summary statistics of T. castaneum assembly using Canu and subsequent filtering and orienting using
RagTag

All Canu contigs  Filtered Canu contigs  Successfully oriented contigs

# contigs 1479 471 244

Total length 313409266 223143008 189081091

# contigs 1479 471 244

Largest 16371545 16371545 16371545
contig

Total length 321044737 223451783 189223737

GC (%) 31.21 33.01 33.37

N50 835545 3660290 5280288

N9O 76926 114221 2148032

auN 3757725.148 5335218.9 6249616.776

L50 45 15 11

L90 903 205 65

The 471 filtered contigs were used to create a new chromosome-scale'assembly by a reference-guided
approach, using,the improved Tcas5.2 assembly as the reference. Two main factors drove this choice: 1)
the availability of'the high-guality Tcas5.2 reference genome‘where jumping library technology was used
to generate the chromosome-scale assembly, and2) the ability ofithis approach to rank input sequences
based on mapping quality. Since Tcas5.2 contained 3,669 unresolved gaps totaling 11 Mb with an average
gap size of 3,125 Kb, the next step was. o close these gaps using TGS-GapCloser with 8.6 Gb of Canu-
corrected long reads (>30 kb). With this approach, 3,607 gaps (98.3 %) were successfully closed, increasing
the genome size by 10.5 Mb, mainly.in.the repetitive part. The gap-filled Tcas5.2 assembly was then used
to determine the alignment of 471 Canucontigs in the 10 chromosomes using RagTag software. Of these,
244 contigs were unambiguously mapped to the reference genome, resulting in a new ONT-based
genome assembly called TcasONT (Table 4.3). The remaining 227 contigs could not be accurately mapped
and were classified as unassembled sequences (Supplementary Table 2). Further analysis revealed that
approximately half of these unplaced sequences (14 Mb) were largely composed of (peri)centromeric

TCAST satDNA, which accounted for more than 50% of the sequences (Supplementary Table 2). To better
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understand the representation of TCAST satDNA, the TcasONT assembly was mapped with TCAST,

identifying 9,446 TCAST monomers, which accounted for 3.6 Mb, or 1.7% of the genome. This means that

most of the estimated 17% TCAST satDNA is still missing from the genome asse , using the
<20kb reads discarded from the assembly procedure, te RagTag orie gen ed 2X,

producing the final TcasONT genome assembly which is used in all subse lys

Raw reads
RISy Nanopiot

Filtered reads
(89 Gb)

\B v

Canu contigs )
(1479) orrected reads N
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T
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Figure 4.6 Workflow of the hybrid assembly approach used in the TcasONT assembly. The difference between all

generated reads (121Gb) and reads filtered after basecalling (89Gb) is based on quality filtering performed by the
Guppy basecaller.
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The final polished TcasONT genome assembly comprises 225.9 Mb, with 191 Mb assembled into ten
chromosomes and the remainder in unassembled contigs. Compared to the Tcas5.2 reference genome,

TcasONT has a 45 Mb larger total chromosome length (Table 4.4).

Table 4.4 Chromosome length comparison between the long-read improved TcasONT and the reference Tcas5.2
assembly of T. castaneum.

Chromosome Tcas5.2 TcasONT Difference (%)

LG10 | 7,222,678 16,519,013 56.27657657

LG2 | 15,265,516 18,6044846 17.94871078

LG3 | 31,381,287 40,533,075 22.57856824

LG4 | 12,290,766 13,994,349 12.17336369

LG5 | 15,459,558 17,646,621 12.39366449

LG6 | 10,086,398 12,970,738 22.23728519

LG7 | 16,482,863 21,226,280 22.34690676

LG8 | 14,581,690 16,306,430 10.57705457

LG9 | 16,184,580 23,519,639 31.18695402

LGX | 8,676,460 10,258,873 1542482298

total length (bp) | 147,631,796 191,579,864 22.93981585

The increase in chfomosome length is between 10.6% and 56.3%, demonstrating a substantial
improvement in genomeé continuity at the chromosome level (Tablé 4.4). Additional dot-plot analysis of
genome-to-genome, mappings between TcasONT and Jcas5.2 revealed high levels of macrosynteny and
collinearity across_all'chromosomes (Figure 4.7a)with strong sequence identity between the genomes.
Additionally, 88% /of the previously unplaced contig sequences»in Tcas5.2 are now correctly integrated
into the chromosomes of TcasONT with.the remaining contigs mainly belonging to the TCAST satDNA.
Gene completeness was assessed using BUSCO analysis with insect universal orthologs from the odb10
database. TcasONT identified 1,329.0f 1,367 genes, corresponding to 97.2% single-copy completeness. It
also included 17 duplicated genes, 13 fragmented, and only 8 missing genes. This represents a significant
improvement over Tcas5.2, with 32 more complete BUSCOs detected in TcasONT (Figure 4.7b). To provide
genome wide insight into the improvement of the repetitive genome content by the TcasONT genome
assembly, a dot-plot analysis of the self-to-self mappings of both genome assemblies was performed
(Figure 4.7c,d) using >70% sequence identity as a criterion to filter significant matches from minimap2

output. As evident from the dot-plot the TcasONT genome has achieved a much higher level of self-
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similarity, as evidenced by large dark blocks of self-similar sequences that sre repeated on all

chromosomes, whereas such blocks are absent in the dot-plot of the Tcas5.2 assembly. Self-to-self

while this number was only 2,202 in Tcas5.2, representing a 20-folo tion of
repetitive genome fraction. Additionally, gene annotations from Tcas5
using the Liftoff tool. Of the 14,467 genes annotated in Tcas5.2, only nained unmapped,

mainly genes with no known biological function (Supplementar
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Figure 4.7 Assessment of T. castaneum assemblies using Dot-Plot and BUSCO Analysis. A Dot-plot comparison of
the TcasONT and Tcas5.2 assemblies. The horizontal axis represents intervals along the TcasONT assembly, while
the vertical axis corresponds to intervals along the Tcas5.2 assembly. Dots near the diagonal indicate co-linearity
between the two assemblies. B Gene completeness analysis using BUSCO based on insgct universal orthologs.
Results are shown as absolute counts for complete and single-copy genes,«complete and duplicated genes,
fragmented genes, and missing genes. C Whole genome-to-genome dot-plot analysis for both TcasONT (left) and
Tcas5.2 (right) assemblies. Each dot represents a region of at least 1,000 base pairs mapped to another part of the
genome, with dot density reflecting the number of highly similar regions.

4.3.3 Improvement of the repetitive genome fraction

To specifically define the improvement of the repetitive gghome fraction, two main classes were analysed;
transposable elements (TEs) and tandem repeats (TRs)in both Tcas5.2 and TcasONT assemblies using the
RepBase database and RepeatMasker (Figure 4.8). The TEs were classified into 4 main types, including
DNA transposons, LINEs, LTRs and SINEs. |laftheixcomparison between the TcasONT and{Teas5.2 genome
assemblies, there is a substantial increase in the number and length of various genomic TEs. TcasONT
contains 92615 identified TEs, nearly.double the 44437 TEs identified in Tcas5.2, reflecting a/more than
2-fold increase in their number and a 3-fold increase in cumulative length, (SupplementaryTable 5). The
largest increase can be seen in'the LINE elements, with 32,237 (16.06 Mb)TEs in TcasONT compared to
4,684 (1.57 Mb) in Ticas5.2, which carresponds to an almost 104fold increase (Figure 4.8). Similarly, LTR
elements show.a 5.7 fold increase in number, with TcasONT containing 14,861 elements compared to
2,593 in Tcas5.2, while their cumulative lengths increased by a factorof 3.3in TcasONT assembly. Number
and length of DNA transposons and SINE elements‘remained roughly the same in both assemblies, with

Visible increases in both categories for TcasONT (Figure 4.8a,b,Supplementary Table 5).
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In addition, the other the most abundant class of repetitive DNA, tandem repeats (TRs), was roughly
examined in Tcas52 and TcasONT using Tandem Repeat Finder (TRF) [100]. TRs were categorized into
three groups based on monomer length: <50 bp, 50-500 bp, and >500 bp. Overall, the analysis revealed
a total of 35.3 Mb of TRs in the TcasONT assembly, which represents a significant increase compared to

9.1 Mbin Tcas5.2 (Figure 4.8c.). A closer examination showed that the number of TR elements in TcasONT
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had doubled in all three size classes (Figure 4.8c). The most notable contribution came from the 50-500
bp and >500 bp TRs, which include "classical" satellite DNAs, that significantly increased the genome
length (31.7 Mb in TcasONT compared to 7.3 Mb in Tcas5.2) (Figure 4.8d) In summary, the 45 Mb
difference in size between genome assemblies of Tcas5.2 and TcasONT is primarily.dueto the|enrichment
of repetitive regions, which account for 45.8 Mb of the increase (Supplementary Table?6). The most
enriched repetitive fractions in the TcasONT assembly were transposable elements(22.5 Mb) and tandem
repeats (26.2 Mb). Remarkably, (peri)centromeric TCAST satellite, DNAwcontributes only 3.6 Mb,
suggesting that the TcasONT assembly has an additional/ 22.6 MMb" of, tandem repeats outside of
(peri)centromeric regions consisting of "classical" satDNASs, characterized by monomer units longer than

50 bp.

4.3.4 Enrichment of Cast1-Cast9 satDNAs,in the TcastONT assembly

To detect the monomers of 9 classes of Cast1-Cast9 satDNAs in Tcas5.2 and TcastONT genome assemblies,
NCBI BLAST was used. In addition, for verification of the TcatONT assembly credibility; the same analysis
of Cast1-Cast9 satDNAs monomer detection was performed on randomly,subsampled >20kb reads which
represent 4x genome coverageand were used in the assembly process. Theresultsare presented in Table
4.5. The TcasONT assembly: shows asubstantial enrichment insthe abundance of Cast1-Cast9 satDNA
compared to Tcas5.2, with the total genome abundance of 4.811% in TcasONT versus 1.141% in Tcas5.2,
For most Cast satDNAs, the abundance (3,839%) in_ the ‘randomlyssubsampled >20kb reads closely
matches their representation in the TcasONT genome. The slight discrepancy in Cast1-Cast9 abundance
between TcastONT and subsampled reads is due to the fact'that 15% of the genome, which consists of
pericentromeric satDNA, is missing in TcatONT. In addition; several Cast satDNAs, in particular Cast5 and
Cast7, show a very strong increase in abundance in TcasONT compared to Tcas5.2 (10.97-fold and 5.04-
fold, respectively). Cast5, with a‘menomer length of 334 bp, has the highest genome abundance in
TeasONT at 1.407%, a significant increase from 0.128% in Tcas5.2. Castl, Cast2 and Cast6 also show
significant increases in genome abundance in TcasONT by 3.22-fold, 2.74-fold and 3.38-fold, respectively.
Though Cast3 and Cast9 have more modest differences, most satDNAs are far more abundant in TcasONT.
Comparing TcasONT to estimated genome abundancies, Cast5 shows the highest increase with 1.407% in
TcasONT compared to 0.906% in the reads showing significant increase. Cast1 and Cast2 also follow this

trend, with their abundances nearly doubling from the reads (0.205% and 0.295%) to TcasONT (0.431%
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and 0.449%). Cast6 is similarly enriched, with 0.374% in TcasONT versus 0.264% in the reads. On the other
hand, some satDNAs are more closely represented in both datasets, such as Cast4, Cast3, and Cast9, which

show similar genome abundances between TcasONT and the reads.

Table 4.5 Enrichment of Cast1-Cast9 repetitive elements in TcasONT when compared to Tcas5.2 and 4x subsampled
corrected reads generated by the Canu assembly algorithm

TcasONT Tcas5.2 Reads (corrected, 4x
coverage)
Monomer | Monomer number Genome Monomer Genome Monomer Abundance | TcastONT/Tcas5.2
Length abundance | number  abundance | number in reads (fold increase)
(%) (%) (%)

Castl 172 5258 0.431 1149 0.134 10080 0.205 3.217036
Cast2 172 4997 0.449 1407 0.164 14481 0.295 2.736779
Cast3 227 1292 0.158 898 0.138 3868 0.104 1.108691
Cast4 179 2129 0.199 814 0.099 9222 0.196 2.015467
Cast5 334 8073 1°407 567 0.128 22903 0:906 10.97176
Castb 180 3980 0.374 908 0.111 12372 0.264 3.377705
Cast7 121 1967 0.124 301 0.025 49995 0.717 5.035729
Cast8 169 534 0.047 248 0.028 1485 0.030 1.659258
Cast9 350 496 0.091 377 0.089 1501 0.062 1.013829
TOTAL 4.811 1.141 3.839

Given the significant improvements in genome assembly, particularly in the representation of satDNAs
regions, the new, TcasONT assembly provides an exeeptional platform for in-depth analysis of both
structure location and genomic organization of the Cast1-Cast9 satDNA sequences, located outside of the

(peri)centromeres.

498.5 |dentification of Cast1-CastOysatDNA"arrays in the TcasONT assembly

Due to the well-documented variability of monomer sequences within a satellite DNA (satDNA) family, it
was crucial to establish parameters for sequence similarity and sequence coverage to ensure the
detection of the vast majority of Cast1-Cast9 satDNA arrays in the TcasONT assembly. Additionally, these
parameters were essential for assessing sequence variation and variability across the genome. To achieve

this, a detailed BLAST search was performed on both the raw Nanopore sequencing data and the TcasONT
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assembly using the consensus sequences of the Cast1-Cast9 monomers. Two key parameters were

measured for all sequences found: sequence coverage and similarity. The results were visualized through

density plots, where color intensity indicated the number of monomers for each C at Figure 4.9).
Most of the Cast satDNAs showed a high intensity, or aggregation, mo region

corresponding to a sequence coverage more than 75% and sequence id et
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Notably, Cast2 and Cast4 showed a distinct pattern with two areas of high density, likely due to partial
sequence similarity between these satDNAs (Figure 4.10). Despite this overlap, they were classified as

separate satDNAs because their consensus sequences differ by 50% of their total sequence length.
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Figure 4.10 Pairwise alignment of Cast2 and Cast4 sequence, with the gray box de
between the satDNA consensuses.

Based on the density plots for all Cast satDNAs, a threshold of >70% seq and >70% identity

was established to effectively map the majority of monomer atellite DNA families

(Cast1-Cast9) onto the TcasONT assembly. This approach en ensive capture of sequence

variation while ensuring that the vast majority of sat mono e successfully identified in the

genome.

Since satDNAs form large arrays that can span several kilo s, the next step was to determine the

properties of the arrays of individual Cast/&a 0 better understand their organization. To investigate
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Figure 4.11 The analysis of the monomer organization for Cast1-Cast9 reveals theyprobability of finding another
Cast monomer at a specifiedidistance from an existing one. Notable spikestin,Cast2, €ast5, and Cast7 indicate a
distinct pattern of satDNA organization that incorporates additional sequences.dncontrastythe other satDNAs show
no sharp increases, suggesting a tandem organization composed solely of satellitefmonomers, as evidenced by the
gradual rises in the graph@and their high starting points. Fer instance, Cast3 demonstrates that 60% of all monomers
in the genome are located immediately after another monomer. The steeprincrease in Cast2 is attributed to the
formationdofa new repeat unit, Cast5 is frequentlysintercalated with R66-like elements, while Cast7 occasionally
exhibitsfaimproper tandem organization with TCAST,

Detailed analysis revealed that, in addition to the homogeneous Cast2 arrays described previously, almost
90% oflCast2 monomers are predominantlyfound as part of a new, longer repeat unit approximately 1270
bp inflength (Figure 4.11, Figure 4.12a). This new repeat family was named Cast2’, and in subsequent
analyses, these two forms of Cast2 arraysiwere analysed separately. For Cast5, further investigation
showed that the observed disruption in tandem organization of arrays was due to the insertion of
previously described R66-like sequences, which were interspersed within the continuous Cast5 arrays
(Figure 4.12c). Similarly, analyses of Cast7 arrays revealed a mixed organization, with Cast7 monomers
frequently associated with (peri)centromeric TCAST satDNA. However, this association exhibited low

sequence length and similarity (Figure 4.12d), suggesting a complex structural arrangement for these
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particular arrays. Considering monomer length and mixed array organization of Cast2, Cast5 and Cast7,

the best window length that ensures detection of the maximum number of arrays was evaluated for each

Cast satDNA.
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that a minimum of three consecutive monomer units should be a criterion for correct array
characterization for each Cast satDNA. Comparative analysis of the Cast1-Cast9 satDNA arrays, taking into
account the number of arrays, the mean value of the arrays, their total length and their abundance,

reveals several notable differences between the Tcas5.2 and TcasONT genome assemblies (Figure 4.13).
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Figure 4.13'Summary statistics of various Cast1-Cast9 properites between TcasONT (red) and Tcas5.2 assemblies
(blue). The statistics.shown are array number (top left)s arraytotal length, (top right), array mean length (bottom
left) and total genome abundance comprised in the arrays,(bottom kight)

The number of arrays shows a significantiincrease in TcasONT, especially for Cast2’, Cast5, and Cast7,
indicating that these sequences ake more comprehensively represented in the new assembly (Figure
4713). In particular the newly defined Cast2/showed the largest increase, with the number of arrays
increasing by more than 9-fold. This indicates that many arrays were either missing or fragmented in the
previous Tcas5.2 genome assembly. In addition, the total arrays length is considerably larger in TcasONT,
with Castl, Cast2’, Cast5, and Cast6 showing the largest increases with 24-fold for Cast2’, thus revealing
a much better representation of these satDNA regions in the new genome assembly (Figure 4.13). This

increase in total array length suggests that the satDNA regions were more thoroughly captured and
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assembled in new Nanopore generated TcastONT assembly, especially for those specific satDNA families.
The array mean lengths have also increased dramatically in the new assembly, particularly for Cast6 and
Cast5, where the mean array lengths have increased 3.16-fold and 5-fold respectively presenting a higher
degree of contiguity in the Cast satDNA regions, implying that the arrays in\ TcasONT lhave fewer
interruptions and are assembled more completely. Finally, the genomefabundance ploet‘confirms the
results from monomer analysis, that the proportion of the genome occupied by these,satDNA arrays has
increased significantly in TcasONT, with Castl, Cast2’, and Cast5 now occupying significantly larger
portions of the genome. Overall, the enrichment of both the arraymumber and their cumulative length
shows a substantial improvement in coverage the Cast satDNAs in the new assembly, demonstrating that
the TcasONT assembly has much more comprehensive iniits representation compared to Tcas5.2.

The final check that the TcastONT assembly represents an excellent platform for the overall analysis of
Cast1-Cast9 satDNAs was the comparison of TeastONT assembly and raw data. Given theichallenge of
accurately assembling satDNA sequences, we'next explored whether the array lehgths and organization
of Cast1-Cast9 satDNAs in the TcasONT assembly truly reflect the ac¢tual structure of the genomic loci
containing these repeats. A k&y concern isthat the repetitive nature of satDNAs caneften lead to assembly
collapse, resulting in ansunderestimation of the number of monomerwunits (or array length) in a genome
assembly compared to real abundance in the genome. Since rawfreads provide a more accurate
representation{of what is actually present in the gehome,awithout being subject of an assembly process,
we conductedia comparative analysis of the Cast1-Cast9 sequences between the individual raw reads and
the newly generated ‘genome assembly. In this\analysis,ywe ‘used previously established optimal

parameters,for detecting arrays (Figure 4.14).
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The results of comparison revealed a significant level of similarity in array patterns between the datasets
of individual raw reads and the TcasONT assembly for most of the Cast satDNAs. For most Cast satDNAs,
the array length distributions is comparable, with peaks typically found around 1,000 to 5,000 bp, which

is especially true for satDNA families with shorter mean arrays. This indicates that the core features of the
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arrays, especially those of shorter lengths, are preserved. However, longer arrays (over 20,000 bp) are
underrepresented in the assembly across longest Cast sequences. This is particularly evident for Cast6,
where the assembly struggles to capture the full range of array lengths seen in the raw data. Despite these
differences, the shared general patterns between the two datasets reflect a levelfof consistency in
assembling shorter repetitive arrays, even though the possibility that the.assembly losesidetail for longer

repeats persists.

4.4 Cast1-Cast9 satDNAs chromosome distribution and genomic environment

Once the Cast satDNA arrays had been precisely determin@d, the next step was to examine their genomic
distribution and regions surrounding them. The results of the chrem@somal distribution are shown as a
heat map in Figure 4.15a. It shows the scaled frequeneynof Castl to Cast9 satDNAs on different
chromosomes, with values normalized relativerto the chromosome with the most abdndance for each
satDNA family and also normalized the the total length of the chromosomes and gray color indicating that
a satDNA familiy is missing from the,chromoesome/ Cast1, Cast2 as well as Cast8 and €ast9 show low to
moderate levels of abundance across most chromosomes, with high peaks for LG6. Cast5and Cast2’ show
more uniform distributions, with €ast2’ occurring with similar frequency on.all chromesomes. Cast3, and
Cast4 appear to have a more variablexdistributions being almost completely absent in LG5 and LG7 and
completely ‘absent an\LGX (Cast4). In addition, Cast6 exhibits ‘highly variable pattern of chromosome
distribution being strongly representated on LG3 and LG9 but ecompletely absent on LG4, LG7, LG10 and
LGX. This heatmap reveals the heterogeneous distribution,of the €ast families, suggesting that certain
Cast families, such as Cast2’ and Cast5 occur on multiple chremosomes, while some other families tend
to localize in‘large amounts on one chromosomal subset while being present in low abundance on others.
This paints to the evolutionary drive of certain satDNA families to either spread throughout the genome

or taaamplify on specific genomic loci.
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This was further confirmed by examining the distribution of Cast1-Cast9 along the length of the

chromosomes (Figure 4.15b). Given the known presence of large blocks of (peri)centromeric

forms with TCAST main satDNA (Figure 4.12). Additionally, so As were found to have a slight

tendency to cluster in the distal regions of the chro ific genomic regions generally

localizing away from the (peri)centromere.

Cast1-Cast9
satDNA

Figure 4.16 Circular plot of the genomic distribution of genes (outer) transposable elements (middle) and Cast1-
Cast9 satDNAs in TcasONT assembly. The genome is divided in equal 500kb bins and the total number of each
element is counted per each window. High abundancy is marked with red, while low abundancy with blue. The
location of the centromere is marked with the red arrow.
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The chromosome distribution of Cast1-Cast9 satDNAs compared to genes and transposable elements was

further analyzed, and the results are shown in a circular plot (Figure 4.16). The analysis was performed

complexity and diversity within these regions. The results show tha tDNAs are
frequently found in gene-rich regions, and often overlap with genes, whi
with TEs. This lack of co-occurrence between Cast elements and TEs serv le of their genomic
independance, with the only exception being the (peri)ce ' where Cast7 satDNA

coincides with TEs. The highlighted regions in the plot emphasiz ar separation between Cast

satDNAs and TEs, and reinforce the idea that Cast elements a ccupy largely non-overlapping

genomic regions (Figure 4.16).

Since the circular plots of the entire genome suggest that C Cast9 elements are embedded in gene-

rich regions, the next step was to detern precise locations of these regions an ether these

regions was conducted. Spe i Cast1-Cast9 arrays

were counted, and the ed to assess the relative
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The scaled values based on the total number of arrays show that most Cast satDNAs have a higher median
gene content than the median of the genome, with the exception of Cast1, Cast6, and Cast7. Furthermore,
Cast2', Cast3, Cast5, and Cast8 are flanked by a significantly larger number of genes{Kolmagorov-Smirnov
test, p <0.01) than the genome average (Supplementary Table 7). These satDNAs also exhibit distributions
above the third quartile of the genome, indicating that many arrays aretembedded ‘inshighly gene-rich
regions. Cast7 is the only satDNA with a significantly lower number of adjacent genes, corresponding to
its intermingled arrangement with (peri)centromeric TCAST satDNA, (Figure.4«2b). In contrast, Cast
satDNAs are surrounded by significantly fewer TEs than the'genome as a whole (Kolmogorov-Smirnov
test, p < 0.01) (Supplementary Table 7), further highlighting the separation of these arrays from the
dynamics of TEs. To further explore the precise location of Cast1-Cast9 satDNAs, a rolling window analysis
was conducted (Figure 4.17c), counting the number of exons within each window and categorizing satDNA
arrays into three size classes: short (<1 kb)), intermediate (1-10 kb), and long (>10 kb). Interestingly, there
was no discernible trend towards shorter afrays.'Infact, in Cast5, Cast2’, and Cast3 most arrays of
intermediate size are deeply embedded. in gene-rich regions and surtéunded by hundreds of éxons. Even
less abundant satDNA families, such as Cast4 and Cast9, show a substantial number of exons in their
vicinity, suggesting thatsgene structure allows of large satDNA arrayssto coexist in the same genomic

environment.

4.5 Mechanists offprdpagation and evolutionlef CasgsatDNAsS

To examine the junction regions of Cast arrayshaccurately, it is essential to define their boundaries
precisely.,Given that the monomers at the edges ofithe array tend to have higher variability due to
reduced recombination efficiency [108], k-mer similarity-based approach was implemented to overcome
this challenge (see Methods). This new method significantly improves the detection and merging of arrays,
as can be seen in Figure 4.18. The red shadedareas represent broken monomer fractions, that cannot be
detectable by the conventional BLAST searehbut can interfere with the micro/microhomology search. As
a result, array edges were successfully redefined to 4bp accuracy, and some arrays that were previously
considered separate were now merged. Using these edge-refined arrays, both closely homologous regions
(20 bp) and larger genomic segments (2 kb) were extracted and aligned using MAFFT for more detailed

analysis.
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Figure 4.18 Example of improved annotation by using the newly:developedk-mer similarity counting strategy. The
location of previous arrays is presented in yellow; the output of the program is visualized by the black line. The
improvement in annotation is presented as the red shaded area on‘array borders.

The macrohomology junction regien analysis (Figure 4.19a) revealed that,/of the ten Cast satDNAs
analyzed, only Cast5 and Cast7 exhibit a censistent similarity in their surroeunding regions formost arrays.
For Cast5 arrays, two dominantregions with high sequence similarity were'identified. One side of arrays
often contains an R66-like sequence, which can also be scattered within Cast5 arrays (see Figure 4.12c),
while the other side predominantly contains an R140-like sequence. Of the 150 Cast5 arrays analyzed,
two-thirds had R140-like sequences at their ends, and one-third had R66-like sequences. Similarly, most
Cast7 arrays were found to be flanked by (peri)€entromeric TCAST (Figure 4.12d). In contrast, the
remaining Cast satDNAs showed only partial similarities in theipsurrounding regions, affecting a smaller
subset of arrays. For example, a subset of the Castl arrays, all from chromosome LG7, had the same
transposon-like sequence at their array ‘ends (Supplementary Figure 5). Additionally, microhomology
analysis of 20 bp sequence motifs'near array boundaries revealed that Castl, Cast3, and Cast9 have poly

A/poly T tracts in these regions, while other.€ast satDNAs lacked a common motif (Figure 4.19b)
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Following the [ gion analysis, it became‘ear t ces ing satDNA evolution likely

NAs themselves, suggesti mponents of the genome that are self-

Cast satDNA genome dynamics (Supple y Figure 2).

Therefore, principal component analysis (PCA) and UMAP embeddings were applied to genetic distance
matrices generated from monomer alignments (Figure 4.20). A genome-wide database of Cast
monomers, annotated with their chromosomal positions, was created. The PCA results revealed a

scattered distribution pattern for most Cast satDNAs, especially for Cast1, Cast2, Cast2', Cast3, and Cast4,
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where regions with a high density of monomers from different chromosomes were observed. An
exception was Cast6 and Cast5, which showed clustering of monomers from the same chromosome,
reflecting their long, homogenized arrays which tend to have high intra-array similarity. To,validate the
accuracy of the PCA embeddings, graphs displaying the percentage of explained variance were included
(Supplementary Figure 3), confirming that dimensionality-reduction techniques effectively captured the
variation within the monomer alignments with up to 94% of the observed variance in Cast4 being

explained by the first principal component alone.
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Figure4.20 A First 2 principal component PCA of the distance matrix generated by all extracted monomer alignment
of-€ast1-Cast9 satDNAs colored based on their chromosome of origin. B UMAP embeddings of the distance matrix
generated by all extracted monomer alignmentfof Cast1-Cast9 satDNAs colored based on their chromosome of
origin.

To disclose relationship between Cast arrays, database of arrays with their corresponding chromosomal
annotations was created and comparative analysis of arrays was performed for in order to examine the

sequence variability of arrays within each Cast satDNA family. The relationships between arrays based on
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sequence similarity are visualized as graph networks (Figure 4.21). The Cast6 and Cast7 were excluded
from this analyses due to their small number of arrays. In these graphs, the distance and interconnectivity
between dots correlate with the sequence similarity between arrays, where closef dots indicate higher
similarity between monomers of different arrays. It is assumed that the relationship between arrays
reflects their genomic spread. Three patterns of satDNA evolution can bededuced fromithé graphs. First
group is characterized by one dominant cluster of relatively closely related arrays from nearly all
chromosomes, the most prominent example of this pattern is Cast3 networkpbutalso can be observed in
Cast8, and Cast9 (Supplementary Figure 4e,f). The second group of CastisatDNAs show several distinct
array clusters of intensive interchromosomal expansion, Where related arrays are spread across different
chromosomes, suggesting that such expansion events oceurred several times throughout Cast2 evolution.
Notably, only one cluster shows intrachromosomal expansion, while the others indicate extensive
interchromosomal exchange. A similar pattern, with several distant clusters containing related sequences
from different chromosomes, is also observed in Cast4pCast2’ and Cast5 (Supplementary Figurerda,g and
c). Finally, the last model of high divergence andthomogenization foricertain arrays is present on Castl
network is characterized by greater distancebetween clusters, with someanray sets,completely separated
due to sequence divergence. Castl also contains two distinct.subgroups of sequences completely
separated from the main«luster, one of which is directly linked toshe transposon element Polytron
(SupplementaryFigure 5), further emphasizing the, complex relationship’between satDNA arrays and
genomic.architecture. Interestingly, these three different patterns of Cast satDNA propagation events
correlate with the@veragelengths of the arrays. For example, satDNAsifor which only one expansion event
can be observed (Cast3, Cast4, Cast8 and Cast9) have a relatively short array length (mostly around 4000
bp). SatDNAs with several expansion evénts, as seen in Cast2, Cast2’ and Cast5, have a moderate array
length/of about 15000 bp. Finally, Cast1, for which no recent expansion centers were observed, also tends

teshave several very long arrays (up to 412kb).
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Pattern 1 Pattern 2 Pattern 3
Cast3 Cast2 Castl

Figure 4.21 Three observed patterns of satDNA evolutionary trends. Clusters representimonomers of highiintra and
intra chromosomal exchange, while‘extended nodes rélative isolation and divergence. The purple circle for Castl
in Pattern 1 represents sequences on LG7 which are associated with Polinton-2 sequence and“are evolutionary
distant from the main cluster (Supplementary-Figure 5)

Given the extensivelinter- and Jintrachromosomal exchange observed in all Cast satDNAs, one possible
mechanism for thissphenemenon could be the insertion,of satDNA arrays mediated by extrachromosomal
circular/DNA (eccDNA)xTo investigate whether €ast satDNAs arepresent in the eccDNA fraction, and
whether they even possess the capacity for genomicexpansion via eccDNA, two-dimensional (2D) agarose
gel electrophoresis followed by Southern blot hybridization ' was conducted. Probes were developed for
the mast abundant Cast satDNAs—Cast1, Cast2’, and Cast5 while Cast6 served as a less abundant but
satDNA with long arrays. The results confirmed, the presence of eccDNA molecules containing these
specific satDNAs (Figure 4.22), supporting.the potential role of eccDNA in facilitating satDNA spread

throughout the genome.
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Figure 4.22 Agarose gels of extrachromosemal circularsDNA for 4 satDNA families Castd (top left),. Cast5 (top right),
Cast2 (bottom left) and Cast6 (hottom right). For-each family, some remnants of linear DNA remained after
purification and 2D electrophoresis, additionally Cast2 and Cast5 had such fractions ofreceDNA that they were

visible upon normal gel inspection. All 4 satDNA had successful Southern blot staining of eccDNA. Courtesy of
Damira Veseljak.

4.6 SUppressioh offfecombination oW'the X chfemoseme

It is’knownthatsatDNAs accumulate in chromosomal regions'with reduced or absent recombination [23],
as these regions lack the repair mechahisms necessary to prevent integration. Since suppressed
recombination often occurs in sex ehromosomes because their chromosome pair is missing in one sex,
we analyzed the number and length of Cast1-Cast9 arrays on the X chromosome and compared to those
on autosomal chromosomes (Figure 4.23, Supplementary Figure 6). Although the Y chromosome, which
is mostly non-recombining, would provide valuable insights for this analysis, it was not available in either
the previous Tcas5.2 or the new TcasONT assembly due to problems in assembly and linkage mapping.
When mapping the Cast1-Cast9 arrays, we found that the X chromosome does not exhibit a significantly

higher average number of arrays per megabase compared to the autosomes (Supplementary Table 8).
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4.7 Transcription levels of Cast1-Cast9 satDNAs

The transcription of euchromatic satDNAs Cast1-Cast9 during embryonic development.was analyzed using

stage development up to hatching (48-144h), as retrieved from the ova et al.,, 2016.
Additionally, transcription of Cast1-Cast9 satDNAs during T. cas L t was assessed using
small RNAs isolated from heads at different stages (larval, ma ale pupae, male and female
adults). Since the head primarily contains brain tissue, lyses likely reflect transcription

during brain development at various stages.
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Figure 4.24 The length distribution of sequenced small RNAs (<35 nt) was analyzed across whole libraries during embryogenesis
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The analysis of small RNA profiles during embryogenesis and brain development revealed an interesting

trend (Figure 4.24). In oocytes and early embryos (0-5h), the small RNA population is almost entirely

composed of piRNAs. As embryogenesis progresses, miRNAs start to appear alon , with their
proportion steadily increasing toward the later stages of embryogene levels
continues through brain development, reaching equal levels with piRNAs @ e. Inadults,

the balance shifts further, with miRNAs becoming more abundant than p emales and males.

To explore the transcriptional activity of euchromatic satDNAs g these stages, small

RNA reads were mapped to the consensus sequences of Cast mono igure 4.25) and the number of

hits was standardized according to library size and ger@abun
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The results show that a considerable number of expressed miRNAs are associated with Castl and Cast2’
satDNAs, both of which show distinct transcriptional patterns throughout development. In contrast, Cast8

shows weak and relatively uniform expression during embryogenesis and almost no expression during
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brain development. The expression patterns of Cast1 and Cast2’ satDNAs are quite similar, with a notable

increase in transcription from the oocyte stage to the 8-16h embryo, where a peak in transcription is

brain development, both Castl and Cast2’ exhibit differential transcripti

observed in the female pupal brain and the lowest in the early oocytes a
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Figure 4.26 A Small RNA library read length distribution mapped to euchromatic satDNAs, Castl, Cast2’ and Cast8.
Pink shading on the distribution denotes read lengths associated with miRNA profiles (19-23bp) while the blue
shade represents piRNA fraction (26-32bp). B Coverage depth of Cast1, Cast2’ and Cast8 monomers by small RNA
reads during embryogenesis and brain development.
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In addition, we analyzed the populations of small RNAs associated with these differentially transcribed

Cast satDNAs (Figure 4.26A). During embryonic development, the Cast1 satellite DNA produces abundant

RNAs also map to the 52-84 bp region, particularly during brain develop

equally as precursors of small RNAs. For the Cast2' monomer, which is m

identify potential genomic target sequences of these s e mapped 462,079 predicted miRNA

target sequences with miRanda, and the results revealed these target sequences are exclusively

mapped to the three Cast satDNAs. This indica hat there are no sequences outside se satDNAs
ci

that could be potential targets for Cast- :

N N
>

\ 4
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5. Discussion

Due to substantial progress in sequencing technologies and bioinformatics tools, the bdrden of generating
new genome assemblies has become a lot easier to overcome. However, satDNA rémainsfone of the most
challenging parts of the genome to assemble. A clear example of this difficulty is seen in the effort to
assemble the relatively small but highly repetitive genomes of holocentric nematodes [110]. The
assemblies were fragmented, with the authors highlighting that the abundant and dispersed satDNA
within holocentromeres is the primary factor causing fragmentation and preventing chromosome-level
assembly [43], [110]. Given that the T. castaneum geneme contains numerous families of repetitive
sequences, particularly satDNAs [116], [146], it's dnsurprising that the official reference assembly
exhibited significant gaps in its representation of these ‘repetitive sequences, including euchromatic
satDNAs. Although evidence suggests thatmeuchromatic satDNAs have some functienal roles, our
understanding of their organization, evolutionary dynamics, and the molecular mechanisms driving their
dispersal, movement, and rearrangement within euchromatin remains limited. The primary aim of this
research was to conduct a comprehensive study of satDNAs within the euchromatin ‘of T castaneum,
which requires an assembly enriched in repetitive regions. Since the reference assembly Tcas5.2 did not
meet this requirement, our first step. was to enhance the assembly of repetitive DNA regions in T.
castaneum.“To achieve this, we generated a high-quality genome asSembly at the chromosome level by

combining nanopore long-read sequencing with a reference-guidedapproach.

5.1 Newly deyeloped isolation protogol

Consideringithatthe most critical factor for successful'nanopore long=read sequencing is the extraction of
high molecular weight (HMW) DNA in sufficient purity and quantity, the first task was to optimize the
isolation protocol for T. castaneum. Due tothe problems of using conventional isolation methods and
eommercial kits and their application'for ONT sequencing, which did not provide DNA of sufficient quality
or quantity for Nanopore sequencing, a new combined isolation and sequencing protocol was developed.
While the nuclei isolation protocol presented by Brown and Coleman [147] was a useful starting point, it
required further improvement, particularly for the then-unexploited application of Nanopore sequencing.
Although the commercial kits tested provide DNA of sufficient length, the DNA pellets were difficult to

dissolve, causing problems during purification and centrifugation.
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Our results of optimizing the isolation of HMW DNA showed that the amount of starting material proved
to be critical, especially in larvae and adult beetles, where non-cellular components such as fat and chitin
required more starting material, leading to nonlinear relationships between weight of starting material
and DNA vyield. The major drawback of this method therefore proved to be'the huge amount of’starting
tissue needed for proper nuclei isolation and subsequent DNA spooling. lt'fanged. from 200mg for pupae
and eggs to >1g for larvae and adults. Although it is possible to achieve even'larger DNA of higher
molecular weight using this protocol, N50 >1Mb could lead 6 clumps ofshard-to-dissolve DNA and
consequently rapid pore death during sequencing, especially for AT and repeat rich genomes such as the
Tribolium species. Based on this DNA isolation with N50 €<200kb fragment length turned out to be optimal
for nanopore sequencing. Additionally, mechanical shearingwusing 31-gauge needles improved sequencing
output significantly, since the number of ultra-long fragments was reduced, and the subsequent cleanup
of short fragments using Circulomics XS had a larger effect on final library and sequencing output.

Key steps added in the newly developed protocol include fully resuspending the nuclear pellets,usage of
gentle wide-bore pipetting, ensuringhthat' the<isolated DNA is spooled in isopropanol ather than
centrifugated. Additionally, we found thatyHigh nucleic DNA input can resultsslow flow rates during
purification requiring manual pressurization, but ultimately does_notraffect DNA quality. The increased
viscosity of4he DNA eluted from the columns indicates, higher/molecdlar weight and quantity. Spooled
DNA in EB bufféenformed a “jelly-like” mass that required pfolonged relaxation at increased temperatures
(up to 50LC)indicating a high degree of entanglement@nd high molecular weight. The sequencing output
of Nanopore librafies prepared from such DNA combined withielongated waiting times proved to be vastly
better than,all other possible variations of commercialikits, and their outputs, and given the method’s
success in isolating HMW DNA from threerelated beetle species, it is recommended as a reliable starting

point for isolation from other Colegptera species and even beyond.

5.2 New genome assembly ofacaStaneum using Oxford Nanopore Sequencing
technology

At the time of this study, the official assembly of T. castaneum was Tcas5.2, which was incomplete, as more
than 25% of the estimated genome size of 204 Mb was missing, as confirmed by in silico analyses.
Approximately 27% of the T. castaneum genome is repetitive, and the Tcas5.2 assembly, created using

lllumina short-read sequencing and optical mapping, had significant problems in assembling repetitive
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regions, especially satDNAs. This posed a problem for this study, which aimed to investigate the structural,
evolutionary, and putative biological roles of nine highly abundant satellite DNAs (satDNAs), Cast1-Cast9,

most of which were absent from the Tcas5.2 assembly.

The long-read sequencing via Nanopore technology was employed to achieve the necessary continuity for
a more complete genome assembly. To this goal, a high-quality T. castaneum genome-assembly at the
chromosome level was generated by combining nanopore long-read sequencing and a reference-guided
approach. The output of 89 Gb of Nanopore data enabled the creation of‘a long-read assembly. The
TcasONT assembled chromosomes lack only 13 Mb of thesestimated 7. castaneum genome sequence of
204 Mb, previously determined experimentally [148]4@and also in silice’in our study. The missing 13 Mb
could primarily be attributed to (peri)centromeric regions, due to assembly-impeding highly repetitive
TCAST satDNA regions [149]. This gap in (perijeentromeric regions is consistent with theehallenges faced
by even large research consortia in captdring the entire (peri)centromeric regions of genomes such as A.
thaliana and H. sapiens [3], [5].

Regarding gene completeness,fonly 8 geneswere missing in TcasONT,»while 60 genes weére missing in
Tcas5.2. Furthermore, repeat centent analysis showed that TcasONT added 47.8 Wib of repetitive
sequences, almost completelyicapturing the repetitive elements gkcept for the (peri)centromere of the T.
castaneun genome anddachieving a 20-fold enrichment of repetitive regions. The TcasONT assembly
revealed a remarkable‘increase in satDNA representation, especiallyfersrepeats longer than 50 bp, and
accounting for 10% of the genome, making TcasONTa suitable platform for in-depth analysis of satDNAs.
This significant improvement allowed for a more detailed analysis of euchromatic Cast1-Cast9 satDNAs.
Theabundanceof Cast1-Cast9 satDNAs in TcasONT was quantified at 8.8 Mb, accounting for 4.6% of the
genome, a figure consistent with experimental data. In addition, a TcastONT assembly enabled the
detection of a new, highly abundaht.euchromatic satDNA related to Cast2, Cast2’. The in-depth analysis
of their distribution revealed that Cast2’ and Cast5 show the largest increases in TcasONT relative to
Tcas5.2, due to their large repeat length (~1100bp Cast2’ and 340bp for Cast5) and the ability to form large
arrays, which were previously omitted.

To understand the genomic organization of these satDNAs, a new algorithm was developed to precisely
detect satDNA arrays at the whole genome scale. This automated method replaced the laborious manual

inspection of the arrays, and made it possible to obtain detailed information about the genomic landscape
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of Cast1-Cast9 satDNAs. Given the potential loss of redundant overlaps in long noisy reads, particularly in
satDNA arrays, it was essential to validate the representation of these arrays in the TcasONT assembly. A
comparative analysis of array profiles in the TcasONT assembly and a random subsample of sequencing
reads confirmed that the assembly accurately reflects the genome’s satDNA landscape. This validation
provided a strong foundation for in-depth analysis of the organizationfand evolution,of Cast1-Cast9

satDNAs, enabling further exploration of their structural and functional reles in the T. eastaneum genome.

5.3 Genomic organization of Cast1-Cast9 saDNAs

The findings from this study, confirm the presence of the ten, "classical" satDNAs (Cast1-Cast9, along with
the newly identified Cast2’) in the form of long tandem arrays within euchromatic regions. These regions,
while less permissive to the accumulatiofn of satDNAs compared to (peri)centromeric heterochromatin,
still support and accommodate these arrays. Moreaver, our gene density analyses showed that the
surrounding regions of the arrays of almost all#Cast satDNAs correlated positively with.the gene-rich
regions compared to the average genedensity in the genome. This discoveryrehallenges the earlier
assumption that euchromatie,satDNAs would primarily localize to distal'regions of the centromere and in
regions bodnded by centfomeric satDNA [26]. Instead;, these satDNAs are distributed distally on the
chromosomal ‘arms, away from centromeric hetefochromatin. The,hypothesis that these euchromatic
satDNAs«might accumulate in genomic regionsyof lessemimportance, such as those consisting of other
repetitive elements such as transposons, was tested by analysing'gene and transposon density in the
vicinity of the Cast1-Cast9 arrays. In contrast to this hypoethesis, theresults revealed that these satDNAs
residetin gene-rich regions do not ovérlap with transposons. Notably, 950 of the total 2900 arrays
overlapped with lifted gene annotations, indicating that a significant portion of these arrays is embedded
within intron bodies. Furthermore, the distribution analysis showed that satDNAs are positioned in
transposon-poor regions, rarely associating with transposable elements or regions linked to them. The
distances between satDNA arrays and nearby exons were consistently small, further supporting their
localization within gene-dense euchromatic areas in arrays of different sizes. Furthermore, the sharp drop

in exon densities relative to array starts and ends, particularly in long array, suggests that these arrays are
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often located at gene boundaries, potentially serving as regulators of gene activity and have impact on

chromatin formation.

The results from our study also challenge previous models that satDNA acéumulation is pfimarily,a feature
of genomic regions characterized by suppressed recombination and genetic repair, suggesting that
recombination suppresses array expansion and may even lead to array loss [150]-[152]. Instead, our
results suggest that satDNAs are capable to integrate into gene-rich regions where recombination does
not prevent their spread but inhibit the elongation of these arrays. This is'especially evident in the analysis
of satDNA length distributions across autosomes and the®X chromosome. The suppressed recombination
on the X chromosome appears to stimulate the formation ef longerarrays, but has no significant effect on
the number of arrays or their sequence variability. This suggests that recombination in euchromatic
regions limits the elongation of satDNA arrays, but it does not prevent their integration.{Once integrated,
the lengths of arrays appear to become ["fixed, establishing a balance between satDNA propagation and

the genomic mechanisms that limitstheir expansion.

5.4 Evolutionary trendsand propagation mechanisms ofiCastis€astO satDNAs

Due to widespread distribution of .satDNAs in euchromatin and thein, potential impact on genome
evolution, the study raises the Question of how these&atDNAs propagate {While the mechanisms of TE
propagation are quite'well understood, such as independent,retrotransposons LINE elements in human
and thegion-autonomous MITE and SINE elements.which, utilize the machinery of other elements [18];
the propagation of satDNAs, particularly within edchrematin, remains elusive. To explore this, we analyzed
the distributionspatterns, genome dynamics, and junctiondregions of Cast1-Cast9 satDNAs. The results
revealed that these satDNA arrays are dispersed across all chromosomes, extending along their entire
lengths without any regional preference except from a noticeable trend of their placement being on distal
parts of the chromosome rather than the pericentromere. Dimensionality reduction analysis confirmed
previous findings that long arrays tend to homogenize [153] which is evident in the large clusters for Cast5
and Cast6 which belong to the same chromosome and array. Additionally, results from this analysis
confirmed the frequent inter and intrachromosomal exchange events involving small and intermediate
arrays, as evidenced by the absence of clustering in Cast3, Cast9 and Cast8. Furthermore, junction region

analysis revealed that these satDNAs, with the exception of Cast5 and Cast7 are rarely associated with
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other repetitive sequences. There are several examples in other species where dispersed satDNAs have
been discovered as short arrays integrated into central repeats of non-autonomous transposon elements.
For example, tandem repeats within the Tetris transposon in Drosophila virilis have been reported to form
the basis for the formation of long satellite arrays, that eventually lose the transposon features in adjacent
regions[154]. Similarly, our findings suggest that the expansion of Cast5 satDNAuis likelysassociated with
the Mariner transposon element, given the presence of transposon-like sequences,in its surrounding
regions. However, besides Cast5, the other Cast satDNAs do not appear. to beconsistently associated with
mobile elements, but they also show extensive propagation. Furthermore, conserved microhomology
regions characterized by the presence of poly-A/T tracts are found im junction regions of some Cast
satDNAs which could represent a preferential insertion site. These findings suggest presence of an efficient

self-propagation mechanism that operates both within and across chromosomes.

Regarding their evolutionary history, graph-network analysis of sequence similarities amang, arrays for
each Cast satDNA showed that they group into three distinct patterns. Under the presumptionithat these
patterns represent snapshots of satDNA activity at specific time points,itis possible to construct a timeline
that explains the genome dynamies and propagation of euchromatic satDNAs\(Figure 5.1)r Initially, a single
expansion event mayoriginatéfrom one center, resulting in shortarrays spreading,rapidly across different
chromosomes (t1) ‘retaifiing high sequence similarities. As these arrays are localized in different
chromosomal regiens, theysstart to diverge in sequence due te reducedsinter-array homogenization, and
some arfays continue to elongate if located in favorable environments (t2). At a later stage, short arrays
could serve as new expansion centers, initiating further dispersal events (t3). Over time, satDNA arrays
may. enter-a dormant phase in which they don’t spread fdrther, but continue to expand in length and
homogenize(t4). Although the exact triggers, for satDNA dispersal are still unclear, the observed patterns
suggest an efficient mechanism that drives theawidespread distribution of these sequences across the

genome.

89



SatDNA Eﬁg:g Short '535';, Moderate Cast1 | Long
avenls Casto J amays| e Casts [ arrays

¢
{
4

arays ' Les T T T
: LG"- LGX q—q : : . :r+l
: LES LG? Wﬁ-
. LGT7 LGX ¥ ——
» LGB —_—
© LGS LG? ey s s s e e
FLG10 : -
' LGX LGK
3 3 3
T 12 ta .
Expansicon E
Dt ey
Elongation B
Homeganizatn

Tirna

Figure 5.1 Timeline of satDNA eXpansion events from a single locus of origin. Initially, a.sudden burst leads to the
rapid spread of satDNA across different chromosomes, followed by a secondaryexpansion event that further
propagates the sequences. The,timeline of events includes distinct phasesimarked byadifferent colors: expansion
can occur in multiple discrete bursts, characterized by a sharp increase in intensity, which is followed by a slower
decline. Divérgence occurs_ over a longer period, becoming mare pronounced with'time as long arrays get fixed into
their genomic locations. Elongation begins later but has a progressively greater effect, while homogenization
remains an ongoing process, particularly influencing the longest arrays.

tn.general, three main mechanisms for satDNA propagation have been proposed so far: (i) dispersion in
short arrays, potentially integrated as central repeats within non-autonomous transposable elements; (ii)
spread through long distances via extrachromosomal circular DNAs (eccDNAs); and (iii) interlocus gene
convefrsion via 3D interactions bétween loci‘in the interphase nucleus [108]. Although satDNAs were
traditionally considered less mobile thanyIEs; this study reveals that satDNAs also possess a significant
ability to spread throughout the genome. TEs are known to proliferate in periodic bursts, often linked to
stressful conditions like heat, irradiation, or chemical exposure, as observed in D. melanogaster[21]. Our
findings suggest that euchromatic satDNAs exhibit a similar pattern of genomic dynamics, with repeated
bursts of expansion. This suggests that satDNAs may also initiate expansion cycles triggered by external

stressors. Further support for this comes from the observation that 7. castaneum euchromatic satDNAs,

90



which are counterparts to pericentromeric satDNAs, also show increased expression in response to heat

stress [155].

Recent studies in D. melanogaster confirmed two potential mechanisms driving satDNA spread throughout
euchromatin: reintegration via eccDNA and interlocus gene conversion, particularly on/the X chromosome
[108]. Presence of Cast satDNAs in the eccDNA fraction suggests that eccDNA-mediated reintegration may
play a significant role in the spread of euchromatic satDNA in T. castaneum. In summary, the results of
clustering patterns, neighboring regions and junction regions analysis as,well‘as'the presence of satDNAs
in the eccDNA fraction, two key mechanisms responsible for'the genamerdynamics and evolution of

euchromatic satDNAs could be proposed: transposition and eccDNAsinsertion.

5.5 Transcriptional activity of satDNAs

We investigated the expression of small RNAs during embryonic and brain development'in . castaneum,
focusing on understanding the transcription patterns of-the most abundant euchrématic satDNAs, Cast1-
Cast9, in embryogenesis and inhe developmentiof highly differentiated organs such as the brain. The
small RNA profile during embiryogenesis and.brain development in T. castaneumwrevealed a notable trend:
piRNAs dominated in _ooeytes andithroughout early embryogenesispwhile miRNAs steadily increased
towards the, end of embryogenesisand became the,dominant small RNA type in the adult brain.
Furthermore, aur study analyzed the transcription of ten etichromatic satDNAs during these stages, with
three satBNAs found, to produce small RNAs in signifiecant quantities. Among them, Castl and Cast2'
showed stage-speCific transcriptional peaks in early blastederm during embryogenesis and the female
pupal brain. Notably, Castl and Cast2' exhibit a similar transcriptional processing mechanism: during
embryogenesis, transcripts are processethinto both miRNAs and piRNAs, but in brain development, they
are exclusively processed into miRNAs. The lack of predicted genomic targets of Cast-specific small RNAs
suggest a self-regulatory role for thesessequences, in contrary to functions typically associated to piRNAs
such as stem cell maintenance and meiosis‘in D. melanogaster [156] with their highest intensity in the
germline [157]. Although piRNAs are typically linked to transposon regulation, their involvement in tandem
repeat regulation, as seen in Bombyx mori female embryos where piRNA-mediated signaling affects sexual
differentiation [158], indicates that Castl and Cast2' could be promising candidates for further RNAI

knockdown experiments to investigate potential phenotypic effects, particularly since T. castaneum
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efficiently transmits RNAi effects to offspring. Furthermore, given that 80% of miRNA knockouts in
Drosophila result in visible phenotypes [159], it is likely that miRNAs in T. castaneum also play crucial roles

in cellular processes during late embryogenesis and brain development.

5.6 Potential biological roles of Cast1-Cast9 satDNAs

Given what we know about the evolution, propagation, and transcriptional activityaof satDNAs, the next
crucial step is to disclose their impact on the genome. Previous researchhon euchromatic satDNA with
short arrays and monomer-length repeats suggests that these satDNAs may be involved in gene regulation,
acting as "evolutionary tuning knobs" by modulating chrematin [38] and jplaying a role in processes like X
chromosome recognition and dosage compensation [160].SatDNAs lo€ated in euchromatic regions might
regulate gene expression by influencing local chromatin structure or through transcripts derived from the
repetitive sequences. For instance, contractionsief the human subtelomeric satellite D4Z4can modify the

chromatin state of adjacent genes, leading to disease,such as like muscular dystrophy [25].

In Drosophila, introns-containingsatDNA have,been shown to be trapscribed along withitheir associated
genes, requiring specific me€¢hanisms toovercome the challenges posed by long,.stretches of repetitive
DNA, such as R-loop formation [161]. Recent studies have also showmsthat euchromatic satDNA-derived
transcripts play a role in the control of embryonic develepment in mosduitoes through sequence-specific
gene silencingd[34]. Additionally, the transcription¢ef a-satellite'DNAs is regulated by Topoisomerase |
(Topl) in response tondouble-strand breaks, a process€onservediacross species such as mouse 3T3 cells
and Drosophila S2'cells, as well as Drosophila larvalimaginahwingdiscs and tumors [162] and may also
apply. to-euchromatic satDNAs. Furthermore, pericentric satellitesdn mice, exhibit a transient peak in
expression during chromocenter formation, that follows a developmental clock; when replication is
inhibited, chromocenter formation_is halted'underscoring the importance of satellite DNA in development
and‘chromatin organization[163]. Moreover, considering that satDNAs are located in gene-rich regions,
their epigenetic regulation, such as the presence of repressive histone marks like H3K9me3, may impact
neighboring gene expression. A genome-wide analysis in humans demonstrated that euchromatic

satDNAs are associated with such repressive marks, suggesting their influence on gene regulation [35].

In addition to directly affecting gene expression, large-scale genomic rearrangements involving long arrays

of Cast1-Cast9 satDNAs scattered throughout the genome are highly probable. The rapid evolutionary
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turnover of euchromatic satDNAs could contribute to a rapid change in the genes’ landscape, and affect

gene function and overall genome dynamics. In summary, the widespread presence of Castl-Cast9

satDNAs in the euchromatic regions of the T. castaneum genome likely exerts signifi influence on gene
expression, genome organization, and evolutionary dynamics, making them'i : further

investigation.
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6. Conclusions

We have produced the most contiguous genome assembly of T. castaneum to dateawith,the significant
improvement in the representation of the repetitive genome portion by Oxford Nanéporeslong-read
sequencing. The new genome is enriched by up to 1/4 of the genome size, especially in the repetitive part
such as transposable elements and satellite DNAs. In addition to enfichment in the repetitive part,

predicted genomic completeness also increased compared to the former Tcas5.2 assembly.

We found that our approach has been extremely efficient An” bridging, highly repetitive regions in T.
castaneum. We believe that our approach could be useful-for all'species for which reference genomes
have been published but whose assemblies are significantly deficient and unassembled in repetitive
regions. In particular, it could be important for genomes that are highly repetitive even outside the
(peri)centromere. Our genome assembly_enriched with repetitive genome parts willéprovide a highly
reliable data point for future comparative analyses ofithe repetitive genome fraction in relatedispecies to
find putative conserved traits in_these extremely/variable genome parts. This will'be,a crugial step in

understanding the evolution ef the gename as a whole.

We have shown that enhanced geneme assembly provides an exceptional platform for in-depth genome-
wide analyses of different and the most abundant satellite DNAs/in euchfomatin."We provided significant
insights into the behavior and organization of these euchrematic $atDNAs in 7. castaneum, challenging
previously-assumptions about their localization and propagation. Contrary to earlier hypotheses, which
assumed that satBNAs are mainly located in gene-poor regions, such as (peri)centromeric regions or
regions abundant/with transposable elements, our study reveals that satDNAs can also be embedded in

gene-rich regions, even in the form of long tandem arrays.

From an evolutionary perspective, this studyprovided evidence of highly efficient mechanism of self-
propagation and homogenization of »satDNA arrays in gene-rich regions. The long arrays tend to
homogenize, with frequent inter- and intrachromosomal exchanges. Most analyzed satDNAs did not
associate with other repetitive elements but their presence in the eccDNA fraction strongly suggested
that eccDNA-mediated reintegration is probably a major force in the spread of these sequences. We
proposed a new model of their genome dynamics characterized by repeated bursts of satDNAs spreading

through euchromatin, followed by a process of elongation and homogenization of arrays. Recombination
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appears to limit the elongation of satDNA arrays, but has no impact on the frequency of their integration

into gene-rich regions.

and piRNAs, whereas transcripts in the brain were exclusively processe |As. The absence of

other genomic Cast-specific small RNAs suggests that the proc ole exclusively in a self-
regulatory mechanism. Two of them showed differential aks in the early blastoderm
during embryogenesis and in the female pupal brain. NAs in brain tissue indicates a
unique regulatory systemin T. castaneum with Cast1 and ' satDNAs as promising candidates for RNAi

experiments to uncover their potential roles.i

Finally, such dynamical sequences with

subject to changes and rearrang
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8. Summary

Satellite DNAs (satDNAs) are tandemly repeated DNA sequence and one of the most@bundant repeated
sequences. They are the fastest evolving part of the eukaryotic genome. So far, studies have mainly
focused on satDNAs in centromeric heterochromatin. Although there is clear evidence that satDNAs have
been assigned some roles, especially in centromere structure, the understandingof their organization,
their evolutionary dynamics and the molecular mechanisms that drive their spread across the genome,
especially in euchromatic regions, is still quite limited. In Tribolium castaneum, a species known for its
abundance of satDNAs, the existing reference genome assembly, Acas5.2,is reported to lack more than
25% of the estimated genome size and the repetitive satDNA regionssare significantly underrepresenting.
To generate a new, the most contiguous genome assembly using Oxford Nanopore (ONT) sequencing, a
new protocol for high-molecular-weight (HMW.,) DNA isolation was developed. The new. chromosome-
level genome assembly was generated by combining Nanopore long-read sequencing data and a
reference-guided assembly approach which/was highly efficient in bridging highly repetitive regions in T.
castaneum. The new TcasONT assembly was generated from 89 Gb of ONT data, spanning 191 Mb of the
estimated 204 Mb genome and'capturing 47.8 Mb of repetitive elements, including 24.3 Mb of satDNAs—
aremarkable 20-folddncrease in representation. The enhanced gehome assembly provided an exceptional
platform for in-depth genome-wide analyses of tentdifferent .and the most abundant satDNAs in
euchromatin, Castl-Cast9:Our genomic analyzes reyealedithat contrary to common assumptions,
satDNAS are abundantiin gene-rich regions, includihg long,arrays and rarely overlap with transposons..
Based on, the integration of the results of principal component analysis of monomer variation and
sequence relationships between arrays, we proposed the most plausible scenario of genome dynamics of
euchromatic Cast satDNAs in the T. castaneum genome. These scenarios involve alternating cycles of
dramatic expansion from one or more centers involving intra- and interchromosomal spread, followed by
a cycle characterized by process sequence.divergence and elongation of satDNA arrays. Comparative
analyses of satDNA arrays, surrounding regions and their junctions reveal efficient self-propagation
mechanism that operates at the inter- and intra-chromosome level. Analyses of arrays’ neighboring
regions showed a tendency of one Cast satDNA to be associated with transposable-like elements. In
addition, the experimental evidence suggests also role of extrachromosomal circular DNA (ecc DNA) in

this extensive satDNA exchange. It can be proposed that satDNA spread occurs via transposition by
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transposable elements and eccDNA-mediated insertion. Considering the effects of recombination on the

spread of euchromatic satDNA, the results show that suppressed recombination has less impact on the

dynamics of satDNA array exchange, but has effects on the length of satDNA array g the longer
arrays. We proposed that the demonstrated extensive genome dynamics @

implies their potential effects on gene expression and regulation. The e

roles of satDNAs, highlighting t fluen

evolution.
0\
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9. Sazetak

Satelitske DNA (satDNA) su tandemski ponovljene sekvence DNA i jedna od najzastupljenijin ponovljenih
sekvenci. Oni su dio eukariotskog genoma koji se najbrze mijenja. Dassada su se studijesuglavnom
fokusirale na satDNA u centromernom heterokromatinu. lako postoje jasni dokazi da [satDNA imaju neke
uloge u genomu, posebno u strukturi centromera, razumijevanje njihove organizacije, evolucijske
dinamike i molekularnih mehanizama koji pokrecu njihovo Sirenje po genomu, posebno u eukromatskim
regijama, jos uvijek je prilicno ograniceno. Kod vrste Triboliumdeastaneum, koja je poznata po znacajnom
udjelu satDNA, pokazalo se da postojeci referentni genomski sklopd, Tcas5.2,"ima nedostatak visSe od 25%
procijenjene veli¢éine genoma, a medu ostalima satDNA regije su znacajno podzastupljene. Kako bi se
kreirao novi, najkontinuiraniji genomski sklop koristenjem Oxford Nanopore (ONT) tehnologije
sekvenciranja, razvijen je novi protokol za izelaeiju DNA visoke molekularne tezine (HMW)sNovi genomski
sklop na razini kromosoma sloZzen je kombinacijom, Nanopore dugih ocitanja i koristenja referentnog
Tcas5.2 genoma, Sto se pokazalo_iznimno u€inkovitom metodom u premoséivanju visoko repetitivnih
genomskih regija kod T. castaneum. Novi TeasONT sklop sastavljen,je od 89 Gb “ONT podataka,
obuhvacdajuci 191 Mb od procijenjenih 204 Mb genoma i 47.8 Mb repetitivnivelemenata, ukljucujuci 24.3
Mb satDNA—Sto je znacajno povecanje u zastupljenosti satDNA, 20 puta vece. Paboljsani genomski sklop,
TcasONT pruzio je platfofmu za/detaljne analize deset razlicitih i najzastupljenijih satDNA u eukromatinu,
Cast1-Cast9. Genomske analize otkrile su da, suprotno vazecim hipotezama, satDNA su zastupljene i u
regijama bogatim genima, ukljucujuci i jako“dugé nizove, te se, regije satDNA rijetko preklapaju s
transpozonima. Na temelju integracije rezultata analize varijacije monomera i srodnosti sekvenci izmedu
nizova,predloZili'smo najvjerojatniji scenarij genomske dinamike eukromatskih Cast satDNA u genomu T.
castaneum. Ovaj scenariji ukljucuje izmjenicne cikluse dramati¢ne ekspanzije satDNA iz jednog ili vise
centara koji ukljucuju unutar-kremesomsko' i medu-kromosomsko Sirenje, nakon cega slijedi ciklus
karakteriziran procesom divergencije satBNA‘sekvence i produljenja nizova. Komparativne analize nizova
satDNA, okolnih regija i njihovih insercijskih mjesta otkrivaju ucinkovit mehanizam samosirenja koji djeluje
na inter- i intra-kromosomskoj razini. Analize susjednih regija nizova pokazale su tendenciju da se jedna
Cast satDNA povezuje s transpozonskim elementima. Osim toga, eksperimentalni dokazi takoder
sugeriraju ulogu ekstrakromosomalne kruzne DNA (eccDNA) u opseznoj propagaciji satDNA. Stoga, je

moguce predloZiti da se Sirenje satDNA dogada putem transpozicije i eccDNA posredovanog umetanja. S
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obzirom na ucinke rekombinacije na Sirenje eukromatskih satDNA, rezultati pokazuju da smanjena

rekombinacija ima manji utjecaj na dinamiku Sirenja nizova satDNA, ali pozitivho utjee na povecanje

njihove potencijalne ucéinke na ekspresiju i regulaciju gena. Takoder je ana

satDNA tijekom embrionalnog razvoja i razvoja mozga. Rezultati pokazuj
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// International congress on transposable elements 2024 : Abstract book.

Saint Malo: ICTE, 2024. str. 154-154

5. Veseljak, Damira; Despot-Slade, Evelin; Volarié¢, Marin; Mestrovi¢, Nevenka; Mravinac, Brankica
Dynamic evolution of satellite DNAs drastically alters genomes of Tribolium sibling species // Abstract Book: the
Evolution of Animal Genomes.
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6. Despot-Slade, Evelin ; Volari¢, Marin ; Mestrovi¢, Nevenka

Transcriptomics of euchromatic satellite DNAs in embryogenesis and development // Epigenomelinheritance and
reprogramming in health and disease : Abstract book.
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7. Volari¢, Marin ; Veseljak, Damira ; Mravinac, Brankica ; Mestrovi¢, Nevenka ; Despot-Slade, Evelin
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PMF-a : knjiga sazetaka = 6th Faculty of Science PhD student sympasium #book of.abstracts.

Zagreb: Prirodoslovno-matematicki fakultet Sveucilista u Zagrebu, 20224 str. 238-239

8. Volari¢, Marin ; Despot-Slade, Evelin ; Mestrovi¢, Nevenka

Nanopore based analyses of genome-wide DNA methylation profilesithrough Tribolium castaneum development
// Epigenome inheritance and reprogramming in health and disease : Abstract book.

2022. str. 22-22

9. Volari¢, Marin; Despot-Slade, Evelin; Mestrovic, Nevenka

Preliminary analyses of genome-wide DNA methylation profiles through the Tribolium castaneum development
using nanopore long readsg//-€hromatin Structure and Function - GRC Postemkist.

2022.str. 11-11

10. Volarié, Marin;; Bespot-Sladg, Evelin ; Mestrovi¢, Nevenka
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Other Competencies

High level of competency for data analysis and
vistalization, including most vital data processing
libraries such as data.table, the entire tidyverse,

Programming R ggplot?

Languages

High proficiency in biology specific libraries such as
Biostrings and GenomicRanges
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High level of competency with standard data
processing pipelines, including pandas, matplotlib and
polars.

Python Additionally proficient and have,built applications.in
web development frameworks such as Flask@and
FastAPI, also experience with common,database
management frameworks such as SQLAlchemy

Proficient in building standalone CLI apps, as well as
Rust python integration using maturin and'web assembly
using wasmpack

High level of proficiency in developing and using shell
scripts for automated pipelines, additionall

Shell/CLI bR Tor ? PT——s e
proficient in developing and using containers like

Docker and Singularity (Apptainer)

High Performance
computing

Proficient in wfiting, automating and submitting jobs to SGE and,PBS
pro HPC cluster arrays as both standalone and containerized
applications

Cloud computing

Amazon webservices development and deployment, high
proficiency in"fAmazon S3, EC2, RDS and Route 53 services.with
production experience. Successfully depleyed 2 standalone
applications.

Laboratory expertise

DNA isolation and gel electrophoresis

RNA'isolation

Protein isolation and westérniblotting

DNA and RNA sequencing andread analysis

ChIP sequening and read-analysis

Oxford Nanopore sequencing and read analysis

Oxford Nanopore methylation analysis

PCR

Bacterial plateing and cloning

116



Open source projects

Project
https://github.com/mvolar/SatXplor/

https://github.com/mvolar/melanoma_random_forest

https://github.com/mvolar/tcasont_assembly

https://github.com/mvolar/R-binance-trading-bot

https://github.com/mvolar/latex_to_clipboard

Description

A satDNA analysis pipeline.

Repository containingi.code'and.graphs for
PCA analysis coupled with.Random forest
predictions ofimelanoma mutations and cell
of origin.

This repository contains the necessary scripts
to recreate the visualizations presented in
the research paper Long-read genome
assembly of the insect model organism
Tribolium castaneum reveals spread of
satellite DNA in gene-rich regions by
recurrent burst events.

A basic 100/50 SMAMACD Binance ftrading
bot with R<Binance API

A rust program which takes the clipboard
last input and puts it into a wolfprham alpha
APl and returns the wolfram alpha result cell
and decimal approximations for simple
queries of different latex formulas in the
clipboard.
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2022

2022

2021

2021

2020

2022

2018

2018

2013

Workshops

EMBO workshop: Epigenome inheritance and reprogramming
in health and disease

Split, Croatia

Fundamentals of Accelerated Computing with CUDA C/C++
Online

Usage of Isabella high-performance cluster

Online

MedlILS Bioinformatics School in Transcriptomics

Online

Winter School of Research Commercialization

Online

Awards and participations

STEM games, Rovinj, Croatia
Mentarship inthe Science Arena
STEM games, Pore€ Croatia

1st Place

University of Zagreb, Croatia
Participation in the 2018 Biology Night

National competition in Biology, Sibenik,
Croatia

1st Place
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Languages

Croatian Native Speaker
English Speak and read/write fluently
German Basic familiarity
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11. Supplementary material

Supplementary Figures
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Supplementary Figure 3. Percentage of variance explained by individual principal components using FactoMineR
PCA package. All Cast1-Cast9 satDNAs have > 50% of their genomic variance explained by the first 2 principal

components and some like Cast1 and Cat4 even more than >90%.
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Supplementary Tables

Supplementary Table 1. T. castaneum genome size estimation performed by findGSE (Sun et
al., 2018) and CovEST (Hozza et al., 2015). The estimations were performed on corfected
reads with a k-mer size of 31.

Program Estimated genome size (bp)
findGSE 203,772,508
CoVEST RE 208,366,566
Repeat ratio
findGSE 27%

Supplementary Table 2. Distribution of satéllites and genes within the 471 contigs used forRagTag
orientation as well as status of their inclusion in the final TcasONT assembly.

Contig name  Contig length (bp) Satellite occupancy Gene occupancy  Contig status in final
(%) (%) ONT assembly
tig00001249 202992 53.31638685 0.66 Final assembly
tig00001150 64053 40.43526455 5.23 “Final assembly
tig00001200 715149 38.5754577 0.29 Final assembly
tig00000106 105261 28.96134371 2994 « Final assembly
tig00000479 78317 27.68875212 8.94  Final assembly
tig00001285 844215 20.15339694 2848  Final assembly
tig00001321 4064624 17.49544361 25.89 Final assembly
tig00001230 69590 15.53527806 34.37 Final assembly
tig00000141 163001 15.20113374 43.49 Final assembly
tig00000341 80874 15.05922793 9.13  Final assembly
tig00001247 2191239 14.38359759 53.59 Final assembly
tig00000393 181067 10.26470864 31.72 Final assembly
tig00001095 425567 8.594886352 45.13  Final assembly
tig00000368 162640 7.58669454 11.48 Final assembly
tig00000205 86465 7.549875672 6.09 Final assembly
tig00001256 16371545 6.089895609 67.54 Final assembly
tig00001106 5280288 5.599561994 67.62 Final assembly
tig00000123 76509 5.592806075 9.36 Final assembly
tig00001078 184875 5.308451657 6.01 Final assembly
tig00000080 103974 5.22342124 30.50 Final assembly
tig00000104 122215 5.058298899 74.39  Final assembly
tig00000189 133676 4.869984141 51.70 Final assembly
tig00000380 161644 4.385563337 15.14 Final assembly
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98043
99939
138167
84497
76132
76762
87565
88189
801972
162033
123410
114221
98592
67705
77005
163715
104527
109881
94010
56730
104008
86677
122566
387201
353143
540479
89242
103648
73154
109054
385409
190074
99481
69011
162065
53946
54700
1125725
1215532
774633

O O O O O O O O O O O O OO0 O, 00O O 0O O O O O O O O O O O o oo o o oo oo o o o o o o

47.14
13.29
39.03
7.52
9.65
7.83
15.88
1.06
12.43
21.17
12.24
4:96
4.75
813
33.10
59.97
4.07
17.08
29.57
1.53
20.13
20.03
4431
35:.54
8.24
1.00
12.73
31.69
4111
36.94
52.38
4.48
3.17
3.00
16.40
1.72
1.73
2.22
12.64
2.54
17.26
14.50
67.99
54.10
32.78

Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Finallassembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
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tig00001089
tig00001110
tig00001113
tig00001114
tig00001115
tig00001116
tig00001121
tig00001137
tig00001146
tig00001155
tig00001160
tig00001162
tig00001163
tig00001164
tig00001165
tig00001166
tig00001175
tig00001241
tig00001242
tig00001243
tig00001254
tig00001262
tig00001263
tig00001264
tig00001265
tig00001272
tig00001273
tig00001279
tig00001284
tig00001292
tig00001293
tig00001297
tig00001306
tig00001311
tig00001312
tig00001338
tig00001440
tig00001464
tig00001546
tig00001806
tig00001820
tig00001168
tig00001661
tig00001210
tig00001607

139911
1662152
871886
134681
753872
1149083
703386
1681977
104362
1716042
48355
45736
100722
52285
115092
85739
134583
916700
81485
211169
93472
81914
124962
93120
48555
660651
291379
905038
1495325
82812
87011
211024
264753
100434
75784
64206
1567878
336888
627080
78956
70295
107370
116514
176808
237164

O O O O O O O O OO O O O O O O O O O O O O O o o o ol OO O o o o o o o o o o

81.59541771

78.1502652
77.24989819
73.66927527

38.58
60.54
44.60
2.82
4.16
63.59
53.84
23.96
4342
72.83
14,58
27.64
6.49
6.69
7.61
20.49
12.24
78.38
5.75
59.36
/.84
13.43
21.01
10.34
777
73.24
48.83
59.23
31.06
6.65
16.60
38.30
52.64
1.46
11.57
8.52
67.94
0.68
12.24
211
2.88
5.13
1.61
0.61
0.79

Final assembly
Final assembly
Final assemibly.
Final assembly
Final assembly
Final assembly
Finalassembly.
Final assembly
Final assembly
Final assembly
Final'assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly.
Final assembly
Final assembly
Final assembly
Final assembly.
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Final assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
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tig00001401
tig00001384
tig00000804
tig00001211
tig00000543
tig00001217
tig00001019
tig00000803
tig00000985
tig00000749
tig00000585
tig00001123
tig00001239
tig00001547
tig00001124
tig00001552
tig00001402
tig00001612
tig00001738
tig00001184
tig00001627
tig00001574
tig00000724
tig00001556
tig00000894
tig00001377
tig00000832
tig00000656
tig00001169
tig00001259
tig00001335
tig00001180
tig00001361
tig00001672
tig00001185
tig00001225
tig00001182
tig00000659
tig00001671
tig00001512
tig00001379
tig00001673
tig00000947
tig00001793
tig00001412

319825
158344
640160

67018

75297
517256
170539
141643
245310
146502
651258
375950
612206
279211
156082
217326
253796
282124
130346
719039
714629
101642
432183
693092
137426
388594
139487
468470
349173
247931
239086
178659

84860

94224
361726
113781
499300
264988
153612
858853

86819
103220

77800
117736
499171

72.98460095
71.68001314
71.15705449
70.5840222
70.25113882
70.11769801
68.08882426
68.02736457
67.88023317
67.77177103
67.71003197
67.50897726
66.52679
66.29502419
66.19853667
65.10081629
64.6846286
64.59783641
64.06180474
63.81406294
63.74426451
63.35668326
62.77363987
62.67926913
62.03047458
61.88078045
61.59857191
61.37938395
61.12070521
61.03916009
60.819956
60.19903839
60.020033
59.32777212
58.20151164
56.76255262
55.82054877
55.25306806
54.89219592
53.91912236
53.83038275
53.07498547
52.17352185
51.95776993
50.73211384

2.28
2.48
0.66
7.54
1.43
0.26
3.67
133
0.77
1.29
0.23
1:52
0.51
0.90
0.82
3.30
1.23
1.28
1.86
0.31
0.21
2.39
0.38
0:21
2.52
0.80
6.59
0.67
0.71
0.85
1.23
0.83
3.67
1.53
0.76
4.08
0.66
0.71
0.88
0.49
6.96
2.18
1.59
1.36
0.28

Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
WUnplaced assembly,
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
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tig00001721
tig00001295
tig00001602
tig00000901
tig00000783
tig00001692
tig00000887
tig00001144
tig00000800
tig00001601
tig00000027
tig00000434
tig00000148
tig00000425
tig00000250
tig00001641
tig00000338
tig00000245
tig00001608
tig00000110
tig00000214
tig00000254
tig00000243
tig00000421
tig00001493
tig00000414
tig00000098
tig00001252
tig00000099
tig00000162
tig00000005
tig00000010
tig00000015
tig00000017
tig00000020
tig00000021
tig00000025
tig00000030
tig00000034
tig00000039
tig00000044
tig00000045
tig00000046
tig00000083
tig00000084

185949
165197
85658
165256
454939
121422
103213
277781
30779
50791
88117
102941
103051
147682
73822
90051
105940
104107
330533
69827
93051
75369
108049
81067
708200
87668
78941
68013
94483
85304
106363
70878
108233
74873
91945
112451
85816
83620
62140
247330
122344
97006
234079
63240
57236

49.49475394
49.00270586
48.50335053
47.96558067
47.55274883
45.52305184
37.64254503

36.7156141
35.61844114
34.74040676
25.81000261
18.63591766
17.44864193
16.25587411
16.10360055
13.69446203

8.27921465
6.850644049
5.676286483
5.347501683
5.208971424
4.943677109
4.600690427
3.561251804
1.692742163
1.259296437
0.936142182
0.473438901
0.381020924
0.376301229

O O O O O O O O O o o o oo o

1.29
0.65
2.84
1.27
0.73
1.73
2.35
0.53
7.89
4.75
6:04
7.44
2202
41.34
38.75
3.23
19.62
12.07
2.17
28.60
20.35
13.07
21.13
54.91
28.60
29.86
51.45
12.30
13.94
113.15
3.82
9.06
1.46
9.58
67.28
1.02
26.78
6.75
22.84
31.63
0.95
2.59
0.62
12.58
31.02

Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
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tig00000085
tig00000092
tig00000093
tig00000095
tig00000127
tig00000139
tig00000145
tig00000147
tig00000176
tig00000180
tig00000187
tig00000201
tig00000213
tig00000217
tig00000218
tig00000219
tig00000226
tig00000234
tig00000239
tig00000244
tig00000248
tig00000249
tig00000252
tig00000259
tig00000265
tig00000267
tig00000271
tig00000283
tig00000288
tig00000289
tig00000295
tig00000304
tig00000308
tig00000322
tig00000325
tig00000334
tig00000335
tig00000358
tig00000362
tig00000363
tig00000367
tig00000381
tig00000382
tig00000384
tig00000415

72879
152602
87327
67560
64107
104087
144136
87190
89550
84392
84642
76926
77758
345276
77574
88124
86344
88869
89660
92526
96904
118321
97502
108031
94516
88774
168029
109338
80612
58975
144071
102115
88424
147283
116164
102418
90023
78569
87218
121205
78672
75061
105076
121125
115676

O O O O O O O O O O O O OO0 O, 00O O 0O O O O O O O O O O O o oo o o oo oo o o o o o o

6.45
23.84
39.91
12.28
4491
28.39

5.94
17.74
26.50
36.42
31.56
15333

3.35
67.03
30.77

7.90

8.63

4.80

242

4.88
11.37

7.33
78.66
15.80
62.51
87.62

5.54
29.52
48.72
35.11
68.18
43.99

1.71
36.63
4491
47.59

221
36.83

9.65

5.90

9.92

571
17.67
80.02
31.67

Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
WUnplaced assembly,
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
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tig00000419
tig00000424
tig00000426
tig00000432
tig00000433
tig00000436
tig00000441
tig00000451
tig00000466
tig00000476
tig00000493
tig00000505
tig00000506
tig00000507
tig00000552
tig00000609
tig00000625
tig00000664
tig00000669
tig00000674
tig00000694
tig00000697
tig00000712
tig00000867
tig00000983
tig00000992
tig00000996
tig00001010
tig00001025
tig00001029
tig00001032
tig00001034
tig00001041
tig00001047
tig00001056
tig00001062
tig00001063
tig00001069
tig00001072
tig00001090
tig00001120
tig00001156
tig00001161
tig00001173
tig00001174

131252
84265
86369

100636

141185
85282

125131

125740

167315
82359

119079

131714

117803

109720
55776

103406
84229
82292
78435

230674

151995
51810

205885

243329
82849

106212
62007
70174
73711
98258
80128
79315
67046

314847

106046
60376
60215
65261
81797
76556

108044
82809
72472
44331
61622

O O O O O O O O OO O O OO0 OO O O O O O O O O o O o o oo ol ©O OO0 o o o o o o o o o

81.19
1.34
17.75
3.03
10.38
13.62
79.3%
1.88
13.17
7.58
12,75
68.25
3746
30.49
5.76
6.83
16.95
19.15
18.94
1.66
0.89
2.52
5.74
18.21
4.06
6.94
5.08
6.61
1.42
10.29
3.94
3.98
3.85
3.89
271
3.64
3.95
4.13
12.28
1.34
6.27
2.54
19.92
35.77
72.30

Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
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tig00001202
tig00001205
tig00001226
tig00001227
tig00001278
tig00001302
tig00001307
tig00001351
tig00001460
tig00001461
tig00001465
tig00001475
tig00001505
tig00001541
tig00001542
tig00001543
tig00001544
tig00001549
tig00001550
tig00001609
tig00001642
tig00001643
tig00001644
tig00001645
tig00001646
tig00001647
tig00001648
tig00001649
tig00001781
tig00001782
tig00001783
tig00001807
tig00001808
tig00001813
tig00001814
tig00001821
tig00001822
tig00001823
tig00001831
tig00001833
tig00001835
tig00001837
tig00001838

146021
98311
99338
51116
68816
62497

137048

376256

183334

433434

134406

102695
70042

174222
80002

172982

133266

238935
59205

113820
44079
83791
94286
55446
66920
73428
55190

116706
72807
82912

136303
63592
87237

119094
55195
71757
80122
46940
56060
79687
76429
52649
57977

O O O O O O O O O O OO0 0O O 0O/0O O 0O O OO O O O O O O OO oo o oo o oo oo o o o o

0.75
7.80
3.75
5.10
53.39
13.27
28.74
0.62
3.94
8.82
1.42
2.03
3.99
6.72
4.87
2.15
3.72
6.17
9.70
5.54
2.32
4.54
1.70
3,93
6.46
2.97
4.12
5.20
2.82
1.26
5.32
2.06
2.50
3.39
7.80
5.02
4.22
4.64
2.57
4.79
5.63
2.03
7.68

Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
WUnplaced assembly,
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
Unplaced assembly
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Supplementary Table 3. Comparison of assembly gaps in the reference Tcas5.2 assembly and TcasONT

Original Tcas5.2 assembly  Gap_filled Tcas5.2 assembly  Gap difference Gap difference (%)
Gap number (N>10) 3669 62 3607 98.31016626

Total N size 11,495,702 991,852 10,503,850
1st quantile 81 41
Median gap size 381 91
3rd quantile 1081 98
Maximal gap size 1,200,301 248,621
Mean gap size 3125 15997

Supplementary Table 4. Gene retention from official Tcas5.2'gene set to TcasONT assembly

Feature TeasONT Tcas5.2 Retained
GENE 14337 14467  99.10140319
CDS 150962 153698 98.21988575
EXON 167786 171320 97.93719356
MRNA 22267 22598  98.53526861
LNC_RNA 1406 1364 103.0791789*
TRANSCRIPT 308 317 97.16088328
PRIMARY_TRANSCRIPT | 226 220 102.7272727*
TRNA 236 247 95.5465587

Supplementary Table 5. Comparision of number and cumulative length of repetitive elements in T.

castaneum TcastONT and Tcas5.2 assembly. The blue shade indicates transposable elements.

Number of elements

TcasONT Tcas5.2 difference difference
(%)
DNA 45267 33970 11297 24.96
LINE 32237 4684 27553 85.47
LTR 14861 2593 12268 82.55
RC 2746 1997 749 27.28
RRNA 998 346 652 65.33
SINE 250 190 60 24.00
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TRNA 29 26 3 10.34
SIMPLE_REPEAT 73293 36673 36620 49.96
LOW_COMPLEXITY | 16286 10168 6118 37.57
UNKNOWN 789 597 192 24.33
TOTAL 186756 91244 95512

TOTAL TES 92615 41437 51178

Length of elements (bp)
TcastONT Tcas5.2 difference difference
(%)

DNA 13499636 8279569 5220067 38.67
LINE 16084939 1572720 14512219 90.22
LTR 2542411 766028 1776383 69.87
RC 353694 258101 95593 27.03
RRNA 354597 50383 304214 85.79
SINE 31176 24455 6721 21.56
TRNA 2202 1978 224 10.17
SIMPLE_REPEAT 4030246 1662985 2367261 58.74
LOW_COMPLEXITY | 752292 487704 264588 35.17
UNKNOWN 117266 59604 57662 49.17
TOTAL 37768459 13163527 24604932

TOTAL TES 32158162 10642772 21515390

Supplementary Table 6. Comparision of tandem repeat.cumulative length'in 7. castaneum TcastONT and

Tcas5.2assembly.

Total sum of tandem repeats (TR) length (bp)

PERIOD SIZE Tcas5.2 TcasONT Difference
<50 1825166 3639659 1814493
50-500 4704595 16769526 12064931
>500 2618407, 14895753 12277346
TOTAL 9148168 35304938 26156770
TOTAL LARGE (>50) 7323002 31665279 24342277
TOTAL ENRICHMENT OF 50761702

REPETITIVE
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Supplementary Table 7. Statistical analysis of Cast arrays flanking regions and gene presence

distribution . The results of the one-sided Kolmogorov-Smirnov test for Cast satDNAs flanking regions

having significantly (p<0.01) fewer (red) or more (green) genes than the average sa

castaneum genome sequence.

Significantly less

satDNA family genes Significant ne
Castl 0.001494 0.482069
Cast2' 0.549259 0
Cast2 0.678151 0.085932
Cast3 0.863316 0.000014
Cast4 0.812581 0.000307
Cast5 0.986053 0
Cast6 0.043741 0.682585
Cast7 0 0.855513
Cast8 0.9896 0.0022
Cast9 0.290457 0.014985

‘

Q s per MB of chromosom

T.

Supplementary Table 8. Number t1-C eng
Chromosome gth (i Number of Cast1-Cas
- arrays -
LG10 16.52 419 25.36
a2 [ 18560 1644, || 4 ¢ 831
LG3 40.53 444 10.95
470, 399 L1314 W, W 936
LG5 17.65 209 11.84
L6 | ) 1297 . G O 21.12
LG7 21.23 299 14.09
1631 4 358 21.95
LG9 23.52 269 11.44
LGX 10. 98 9.55
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Supplementary Code

Supplementary Code 1. BLAST functions used in defining the satDNA monomers in both TcasONT and Tcas5.2
assemblies.

blast_to gff <- function(s_name,q_name,name,work_dir)

{

setwd(work_dir)

blasts <- readDNAStringSet(s_name)
#try(blasts <- blasts[1:10000])

blastq <- readDNAStringSet(q_name)

writeXStringSet(blasts,"C:/Users/User/Documents/R/win-library/4.0/metablastr/seqs/blasts.fa",format="fasta")
writeXStringSet(blastqg,"C:/Users/User/Documents/R/win-library/4.0/metablastr/seqs/blastqg.fa",format="fasta")

blast_dt <- blast_nucleotide _to nucleotide(
query ='C:/Users/User/Documents/R/win-library/4.0/metablastr/seqgs/blastq.fa’,
subject = 'C:/Users/User/Documents/R/win-library/4.0/metablastr/seqs/blasts.fa’,
output.path = tempdir(),
db.import = FALSE,
evalue =0.001,
cores=16) %>% as.data.table(.)

g_tmp_dt <- data.table(query_id=names(blastq),widt=width(blastq))
casts_in_un <- blast_dt

nn

gff temp <- casts_in_un[gcovhsp>70 & perc_identity>70,c("subject_id","query_id","s_start","s_end","bit_score")]
setnames(gff _temp,c("subject_id","query_id","s_start","s_end","bit_score"),c("segnames","feature","start","end","scor
e"))

gff templ,source:="Rblast"]

gff templ,strand:="+"]

gff templ[,frame:="."]

gff templ,group:=name]

gff templstart>end, c("end", "start") := .(start, end)]
setcolorder(gff temp,c("segnames"”,"source","feature
file = pasteO(getwd(),"/",name,".gff")
fwrite(gff_temp, file = file, row.names=FALSE, sep="\t",quote=FALSE,col.names = FALSE)
return(gff_temp)

}

,'start",

end","score","strand","frame","group"))

blast_to raw<- function(s_name,q_name,name,work_dir)

{

setwd(work_dir)
blasts <- readDNAStringSet(s_name)
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blastq <- readDNAStringSet(q_name)
writeXStringSet(blasts,"C:/Users/User/Documents/R/win-library/4.0/metablastr/seqs/blasts.fa",format="fasta")
writeXStringSet(blastqg,"C:/Users/User/Documents/R/win-library/4.0/metablastr/seqs/blastqg.fa",format="fasta")
blast_dt <- blast_nucleotide_to_nucleotide(
query ='C:/Users/User/Documents/R/win-library/4.0/metablastr/seqgs/blastq.fa’,
subject ='C:/Users/User/Documents/R/win-library/4.0/metablastr/seqs/blasts.fa’,
output.path = tempdir(),
db.import = FALSE,
evalue =0.001,
cores=16) %>% as.data.table(.)
g_tmp_dt <- data.table(query_id=names(blastq),widt=width(blastq))
casts_in_un <- blast_dt
blast_dt <- casts_in_un#[qgcovhsp>70 &
perc_identity>70]#,c("subject_id","query_id","s_start","s_end","bit_score","strand")]
#blast_dt[start>end, c("end", "start") := .(start, end)]
return(blast_dt)
}
rpt_fix <- function(dt,katalog)
{
dt <- copy(dt)
dt[,V10:=str_remove(V10,"Motif:")]
dt[,V3:=v10]
#imena kroz katalog repeatova da bi se dobile klase repeatova
crossref <- copy(katalog)
setnames(crossref,c("pos in repeat: begin
crossref[grep("M\\D+",status),type:=class]
crossref[grep("M\D+",status),class:=status]
crossref <- crossref(,.(class,type)] %>% unique(.)
setnames(dt,"V10","type")

non non

,"repeat”,

non non

class/family"),c("status","type","class"))

setkey(crossref,type)
setkey(dt,type)
print(dt)

dt <- dt
crossref<-crossref
dt2 <- merge(crossref,dt,by="type",allow.cartesian=TRUE)
dt2[type==V3]
dt2[,V3:=class]
dt2[,class:=NULL]
dt2[,V9:=type]
dt2[,type:=NULL]
print(dt2)
return(dt2)

}
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Supplementary Code 2. Filtering contigs. This scripts defines the steps for contig filtering in the assembly.

i
library(data.table)
library(Biostrings)
library(stringr)
source("blast_functions.R")

#filtering contigs, based on 1000bp gene content in them, everything else gets discarded

i
genes_on_tigs <- fread("./scaffolding_results/genes_on_contigs.gff3",fill=TRUE,header=FALSE,skip=3,sep="\t")
genes_on_tigs[,.N,by=V1][N>10]

genes_on_tigs <- genes_on_tigs[V3=="gene",sum(V5-V4),by=V1]

colnames(genes_on_tigs) <- c¢("names","length")

tigs <- readDNAStringSet("scaffolding_results/ragtag/t_cast_contigs.fasta")

tigs[str_remove(names(tigs)," .*")%in%genes_on_tigs[length>1000,names]] %>%
writeXStringSet("./scaffolding_results/filtered_contigs.fasta")

# analyis of mapped contigs

)
dt <- fread("./scaffolding_results/scafolding_output_1/ragtag.scaffold.confidence.txt")
names <- dt[,query]

contigs <- readDNAStringSet("./scaffolding_results/filtered contigs.fasta")
contigs[str_remove(names(contigs)," .+")%in%dt[,query]] %>%
writeXStringSet("./scaffolding_results/ragtag/included_contigs.fasta")

all_contigs <- names(contigs)

#blasting sattelites on contigs finding sat content on contigs

)
dt <- blast_to_raw(g_name = "casts_19.fasta",s_name = "TcasONT.fasta",work_dir =
"E:/t_cast_assembly/assembly_analysis/",name="blast_sats_assembly")

dt <- dtl

# dt <- blast_to_gff(q_name = "main_sat.fasta",s_name ="t_cast_contigs.fasta",work_dir =
"E:/t_cast_assembly/assembly _analysis/",name="blast_main_sat_assembly")
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dt <- fread("E:/t_cast_assembly/assembly_analysis/blast._ main_sat_assembly.gff")
dt[V4>V5, c("V5", "V4") = .(V4, V5)]
tig_lengths <- readDNAStringSet("E:/t_cast_assembly/contig_analysis/t_cast_contigs.fasta")

tig_lengths <- data.table(seqnames=str_remove(names(tig_lengths)," .+"),seq_width=width(tig_lengths))
dt <- merge(dt,tig_lengths,by.x="V1",by.y="segqnames")

dt <- dt[V6>400] %>%makeGRangesFromDataFrame(segnames.field = "V1" start.field = "V4",end.field =
"V5") %>% reduce() %>% as.data.table()

dt <- merge(dt,tig_lengths,all=TRUE)

dt <- dt[,sum(width),by=c("seqgnames","seq_width")]
dt[,sat_percentage:=round(V1*100/seq_width,5)]

gene_perc <- fread("./scaffolding_results/ragtag/genes_on_contigs.gff3",skip=3) %>% .[V3=="gene"]
gene_perc[,width:=abs(V5-V4)]

gene_perc <- gene_perc %>% .[,sum(width),by=V1]

colnames(gene_perc) <- c("segnames","gene_length")

dt <- merge(dt,gene_perc,all=TRUE)

dt[,gene_perc:=gene_length*100/seq_width]

dt 2 <-dt

dt_2[,in_assembly:="Not in assembly"]

dt_2[segnames%in%str_remove(all_contigs," .*"),in_assembly:="Unplaced assembly"]
dt_2[segnames%in%names,in_assembly:="Final assembly"]
dt_2[is.na(sat_percentage),sat_percentage:=0]

dt_2[is.na(gene_perc),gene_perc:=0]

dt_2[in_assembly I="Not in assembly" ,c(1,2,4,6,7)] %>%
fwrite("./scaffolding_results/ragtag/contig_gene_sat_content_za_evelin.csv")

sv_1 <-alignments[,unique(cum_ref),by=refID][order(V1)][,unique(V1)]

namess <- alignments[,unique(cum_ref),by=refID][,unique(reflD)]

sv_2 <-alignments[,unique(cum_query),by=queryID][,V1]

namesq <- alignments[,unique(cum_query),by=queryID][,querylD]
alignments[,unique(cum_ref),by=reflD]

dt[order(-sat_percentage)]
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Supplementary Code 3. Finding and creating arrays in TcasONT and Tcas5.2 assemblies

i
source("blast_functions.R")
library(data.table)
library(Biostrings)
library(stringr)
library(tidyverse)
library(ggplot2)

# satelite content, 2d density plot analyis for filtering parameters

)

sat_cont_dt <- blast_to_raw(q_name = "casts_19.fasta",s name = "TcasONT.fasta",work_dir =
" /data/",name="blast_sat assembly")

tmp <-

sat_cont_dt[grep("Cast",query_id),.N,by=c("query_id","qcovhsp","perc_identity")] %>% .[,perc_identity:=round(perc_i
dentity)]

p <- ggplot(tmp[-grep("Cast2-prime",query_id)], aes(gcovhsp, perc_identity)) +
geom_density_2d_filled(contour_var = "ndensity",bins=50) +
facet_wrap(vars(query_id))+
theme_bw() +
scale_fill_discrete_divergingx()+
ylab("Percentage identity (%)") +
xlab("Query coverage (%)") +
theme(legend.position = "none")

#finding the cast2 array size

i

ext_table <- data.table(name=unique(sat_cont_dt[grep("Cast",feature),feature])) %>% dcast(...~name)
vec <- seq(from=100,t0=2000,by=10)

ext_table <- rbind(ext_table,vecfill=T) %>% .[-1]

ext_table[,.:=NULL]

ext_table <- ext_table %>% melt(id.vars="x")

fun <- function(ext_factor,array="Cast1")

{
sat_copy <- copy(sat_cont_dt[feature==array])
sat_copy[,enE:=end+ext_factor]
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result <- sat_copy %>% makeGRangesFromDataFrame() %>% reduce() %>% as.data.table() %>% .[,mean(width-

ext_factor)]
return(result)
}
for(i in unique(ext_table[,variable]))
{
ext_table[variable==i,value:=sapply(ext_table[variable==ix],FUN = fun,array=i)]

}

ext_table[,value:=as.double(value)]
ext_table[,value_scaleE:=value/max(value),by=variable]
ext_table[,cumsum_value:=cumsum(value_scaled),by=variable]
sat_cont_dt

p <- ext_table %>% ggplot() +
geom_line(aes(x=x,y=value_scaled,color=variable)) +
scale_color_npg() + facet_wrap(~variable) +
theme_bw()

#Hcreating all arrays file

)

#setnames(sat_cont_dt,"query_id","feature")

names <- unique(ext_table[,variable])

ext_fact <- ¢(250,250,250,250,250,1000,250,500,250,250)
ext_fac_dt <- data.table(names,ext_fact)

for (i in ext_fac_dt[,names])

{
print(i)
ext_factor <- ext_fac_dt[names==i,ext_fact]
sat_copy <- copy(sat_cont_dt[feature==i])
sat_copy[,enk:=end+ext_factor]
result <- sat_copy %>% makeGRangesFromDataFrame() %>% reduce() %>% as.data.table()
result,array:=i]
#turn off for stats
result[,width:=width-ext_factor]
result[,enE:=end-ext_factor]

if (i =="Cast1")
{
array_dt <- result
}
if (i 1="Cast1")
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{
array_dt <- rbind(array_dt,result)

}

#if cast2 array has a cast2-prime within 170 bp beofre or after it is a Cast2-prime array

cast2_array_dt <- array_dt[array=="Cast2"]

cast2_array_dt[,ar_id:=paste(seqnames,start,sep="_")]

cast2_array_dt[,c("start", "end") := .(start-170, end+170)]

cast_prime_array_dt <- array_dt[array=="Cast2-prime"]

try(cast_prime_array_dt[,ar_id:=NULL])

setkey(cast2_array_dt,segnames,start,end)

setkey(cast_prime_array_dt,seqnames,start,end)

ar_ids_with_cast_prime <- foverlaps(cast2_array_dt,cast_prime_array_dt) %>% na.omit() %>% .[,ar_id]
new_arrays <- foverlaps(cast2_array_dt,cast_prime_array_dt) %>% na.omit()

final_array_number <- new_arrays[,c("segnames","start","end","i.end","ar_id","i.width","i.start")] %>%
[i.start<start,start:=start-i.width] %>%
.[end>i.end,i.enE:=end] %>%
.[end<i.end,i.enE:=i.end-170] %>%
makeGRangesFromDataFrame(start.field = "start",
end.field = "i.end",
segnames.field = "seqnames") %>%
reduce() %>%
as.data.table()

#if cast2-prime

array_dt[array=="Cast2",ar_id:=paste(segnames,start,sep="_")]

array_dt[array=="Cast2" & ar_id%notin%ar_ids_with_cast_prime,array:="Cast2_pure"]
final_array_number[,array:="Cast2-mix"]

array_dt <- rbind(array_dt[array!="Cast2" & array!="Cast2-prime"],final_array_number,fill=TRUE)

#gff save for arrays

{
gff temp <- copy(array_dt cast2_fixed)

gff templ[,ar_id:=NULL]

gff temp[,width:=NULL]

gff templ,stranE:=NULL]

gff templ,score:=1000]
colnames(gff_temp) <- ¢("segnames

mnn mnn

,'start",

end","feature","score")
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gff templ[,source:="Rblast"]

gff templ,strank:="+"]

gff templ[,frame:="."]

gff templ,group:=feature]

setcolorder(gff temp,c("segnames”,"source","feature","start","end","score","strand","frame","group"))
fwrite(gff_temp, file ="./data/full_array_annot.gff3", row.names=FALSE, sep="\t",quote=FALSE,col.names = FALSE)
}

mean <- array_dt[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width > 2000),mean(width),by=array][,V1]
median <- array_dt[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width >
2000),median(width),by=array][,V1]

number <- array_dt[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width > 2000),.N,by=array][,N]
total_len <-array_dt[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width >
2000),sum(width),by=array][,V1]

names <- array_dt[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width > 2000),.N,by=array][,array]
max <- array_dt[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width > 2000),max(width),by=array][,V1]

data.table(names,number,mean,median,max,total_len) %>% .[order(names)]
array_dt[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width > 2000)]
casts <- readDNAStringSet("./data/casts_19.fasta")

dt <- data.table(width(casts),names(casts)) %>% .[order(V2)]

dt

#blasting for sattelite on assembly, new and old

)
sat_cont_dt <- blast_to_gff(q_name = "casts_19.fasta",s_name = "TcasONT.fasta",work_dir =

" /data/",name="blast_sat_assembly")

sat_cont_trim_reads <- blast_to_gff(q_name ="casts_19.fasta",s_name = "15x_corrected_coverage.fasta",work_dir =
" /data/",name="blast_sat_trim_15x_assembly")

sat_cont_15x_reads <- blast_to_gff(q_name = "casts_19.fasta",s_name ="15x_corrected_coverage.fasta",work_dir =
"E:/t_cast_assembly/assembly analysis/",name="blast_sat_trim_15x_assembly")

sat_cont_dt[grep("NC",segnames),.N,by=feature][order(feature)]
sat_cont_52 dt[grep("NC",segnames),.N,by=feature][order(feature)]
sat_cont_reads_cor[,.N,by=feature][order(feature)]
sat_cont_trim_reads|,.N,by=feature][order(feature)]

sat_cont_trim_reads|[,.N,by=feature]{order(feature)]

sat_cont_15x_reads[,sum(end-start)*100/y,by=feature][order(feature)]

y <- sum(width(reads_used))
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#comparison with tcas5.2

i

sat_cont_52_dt <- blast_to_gff(q_name ="casts_19.fasta",s_name = "tcast_full _assembly.fasta",work_dir =
" /data/",name="blast_sat_assembly 52")

names <- unique(ext_table[,variable])

ext_fact <- ¢(250,250,250,250,250,1000,250,500,250,250)

ext_fac_dt <- data.table(names,ext_fact)

for (i in ext_fac_dt[,names])
{
print(i)
ext_factor <- ext_fac_dt[names==i,ext_fact]
sat_copy <- copy(sat_cont_52_dt[feature==i])
sat_copy[,enE:=end+ext_factor]
result <- sat_copy %>% makeGRangesFromDataFrame() %>% reduce() %>% as.data.table()
result[,array:=i]
if (i=="Cast1")
{

array_dt 52 <-result

}

if (i 1="Cast1")
{
array_dt_52 <-rbind(array_dt_52,result)

}
}
array_dt_52 <-array_dt_52[grep("NC",seqgnames)]
#if cast2 array has a cast2-prime within 170 bp beofre or after it is a Cast2-prime array
cast2_array_dt <- array_dt_52[array=="Cast2"]
cast2_array_dt[,ar_id:=paste(seqnames,start,sep="_")]
cast2_array_dt[,c("start", "end") := .(start-170, end+170)]

cast_prime_array_dt <- array_dt_52[array=="Cast2-prime"]
cast_prime_array_dt[,ar_id:=NULL]

setkey(cast2_array_dt,seqnames,start,end)
setkey(cast_prime_array_dt,seqnames,start,end)

ar_ids_with_cast_prime <- foverlaps(cast2_array_dt,cast_prime_array_dt) %>% na.omit() %>% .[,ar_id]
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new_arrays <- foverlaps(cast2_array_dt,cast_prime_array_dt) %>% na.omit()

final_array_number <- new_arrays[,c("seqnames","start","end","i.end","ar_id","i.width","i.start")] %>%
.[i.start<start,start:=start-i.width] %>%
.[end>i.end,i.enkE:=end] %>%
.[end<i.end,i.enE:=i.end-170] %>%
makeGRangesFromDataFrame(start.field = "start",
end.field = "i.end",
segnames.field = "seqnames") %>%
reduce() %>%
as.data.table()

H#if cast2-prime

array_dt_52[array=="Cast2",ar_id:=paste(seqnames,start,sep="_")]

array_dt_52[array=="Cast2" & ar_id%notin%ar_ids_with_cast_prime,array:="Cast2_pure"]
final_array_number[,array:="Cast2-mix"]

array_dt_52 <-rbind(array_dt_52[array!="Cast2" & array!="Cast2-prime"],final_array_number,fill=TRUE)

mean <- array_dt_52[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width >
2000),mean(width),by=array][,V1]

median <- array_dt_52[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width >
2000),median(width),by=array][,V1]

number <- array_dt_52[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width > 2000),.N,by=array][,N]
total_len <- array_dt_52[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width >
2000),sum(width),by=array][,V1]

names <- array_dt_52[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width >2000),.N,by=array][,array]
max <- array_dt_52[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width >
2000),max(width),by=array][,V1]

data.table(names,number,mean,median,max,total_len) %>% .[order(names)]
sat_cont_52 dt

sat_cont_dt

array_dt
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Supplementary Code 4. General assembly statistics calculated on theTcasONT assembly and gene

completeness analysis

i
library(data.table)
(Biostrings)
library(stringr)
library(tidyverse)

library

#BUSCO analyis 1,2,3
i

file_names <- list.files("./scaffolding_results/busco_analysis/") %>% grep("busco_Tca",.,value=T)

busco_table <- data.table()
for (i in file_names)
{
dt <- fread(paste0("./scaffolding_results/busco_analysis/",i),fill=TRUE,skip = 3)
name_id=str_remove(i,"busco_ ")
name_id=str_remove(name_id,"\\..+")
print(name_id)
dt[,name:=name_id]
busco_table=rbind(busco_table,dt)

busco_tablel[,.N,by=c("name","V2")] %>% dcast(...~name) %>%
fwrite("./scaffolding_results/busco_analysis/busco_output_table.csv")

Hrepeat masker analysis

)

rpts_polished ONT <- fread("./data/TcasONT _repeats.gff")
rpts_t_cast <- fread("./data/Tcas52_repeats.gff")

rpts_polished ONT[,source:="Tcast ONT"]
rpts_t_cast[,source:="Tcas5.2"]
rpt_tot <- rbind(rpts_polished ONT,rpts_t_cast)

rpt_tot[,.N,by=c("V2","source")]
rpt_tot[,group:=v3]

rpt_tot[grep("DNA",V3),group:="DNA"]
rpt_tot[grep("LINE",V3),group:="LINE"]
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rpt_tot[grep("RC",V3),group:="RC"]
rpt_tot[grep("SINE",V3),group:="SINE"]
rpt_tot[grep("LTR",V3),group:="LTR"]

rpt_tot[,.N,by="group"]
rpt_tot[,source:=factor(source,levels = c("polished","tcast5_2"))]

Ivl <- rpt_tot[,.N,by="group"][order(-N)][,group]
rpt_tot[,group:=factor(group,levels = Ivl)]

rpt_tot[group!="Unkown" & group!="Retroposon" &group!="Retroposon?" &group!="Satellite" ] %>% ggplot() +

geom_bar(aes(x=group,fill=source),position="dodge") + scale_fill_npg()

rpt_tot[group!="Unkown" & group!="Retroposon" &group!="Retroposon?" &group!="Satellite"][,sum(V5-

V4),by=c("group","source")] %>% ggplot() + geom_col(aes(x=group,y=V1,fill=source),position="dodge") +
scale_fill_npg()

rpt_tot[group!="Unkown" & group!="Retroposon" &group!="Retroposon?"

&group!="Satellite" ][,.N,by=c("group","source")] %>% dcast(group~source) %>%
fwrite("./repeat_masker_results/number_of repeats.csv",sep="\t")

rpt_tot[group!="Unkown" & group!="Retroposon" &group!="Retroposon?" &group!="Satellite" ][,sum(V5-

V4),by=c("group","source")] %>% dcast(group~source) %>%
fwrite("./repeat_masker results/length_of repeats.csv",sep="\t")

#gene analysis
i

genes_tcast <- fread("./data/GCF_000002335.3 Tcas5.2_genomic.gff",skip=3,fill=T,sep="\t")
genes_ont <- fread("./data/TcasONT_genes.gff3",skip=9,fill=T,sep="\t")

genes_tcast <- merge(genes_tcast,name_links,by.x="V1", by.y="V7") %>% .[,V1:=V3.y]

genes_ont <- genes_ont[,V1:=str_remove(V1," RagTag")] %>%
merge(.,name_links,by.x="V1",by.y="V7") %>% .[,V1:=V3.y]

merge(genes_ont[V3.x=="gene",.N,by=V1],genes_tcast[V3.x=="gene",.N,by=V1],by="V1") %>%
fwrite("./data/gene_content_by_chromosome.tsv")

#chromosome lengths statistics

(1)
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tcast_52 <- readDNAStringSet("./data/tcast_full_assembly.fasta"){1:10]

ONT _assembly <- readDNAStringSet("./data/TcasONT.fasta")[1:10]

dt <- data.table(names=str_remove(names(tcast_52)," .+"),width=width(tcast_52),source="tcast52")

dt_2 <- data.table(names=str_remove(names(ONT _assembly)," .+"),width=width(ONT_assembly),source="ONT")
dt <- rbind(dt,dt_2)

dt %>% dcast(V3~source,value.var = "width") %>% fwrite("./data/chr_lengths.tsv",sep="\t")
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Supplementary Code 5. Relationship between Cast1-Cast9 satDNAs and transposable elements/genes

i
source("blast_functions.R")
library(data.table)
library(Biostrings)
library(stringr)
library(tidyverse)
library(ggplot2)

#finding genes in cast vicinity

)
chroms <- readDNAStringSet("./data/TcasONT.fasta")

dt_width <- data.table(names=names(chroms),width=width(chroms))
arrays <- fread("./data/full_array_annot.gff")

arrays <- merge(arrays,dt_width,by.x="V1",by.y="names")

array_dt <- arrays/[,c(1,3,4,5,10)]
try(setnames(array_dt,c("Vv1","V3","V4","V5"),c("segnames","array","start","end")))
genes_ont <- fread("./data/TcasONT_genes.gff",skip=0,fill=T,sep="\t")
genes_ont <- genes_ont[V3=="exon"]
setnames(genes_ont,c("V1","V4","V5"),c("segnames","start","end"))
genes_ont[start>end, c("end", "start") := .(start, end)]
array_dt[,ar_id:=paste(array,seqnames,as.character(start),sep="_")]
array_dt[,width:=abs(end-start)]

genedt <- genes_ont

cont_fac <- 50000

bin=50
try(setnames(genedt,c("segnames”,"start","end"),c("V1","V4","V5")))
Hi#HHbef array

glob_tmp <- copy(array_dt[width>330])

glob_tmpl,c("start", "end") := .(start-cont_fac, start)]

glob_tmpl,ar_size:=as.character(cut(glob_tmpSwidth,
breaks=c(0,1000,10000,50000)#,
#labels=c("1Q","2Q","3Q"), include.lowest=TRUE
)
]

setkey(glob_tmp,segnames,start,end)
setkey(genedt,V1,V4,V5)

overlapdt <- foverlaps(genedt,glob_tmp)
overlapdt[,c("V5","start"):=.(V5-start,start-start)]
overlapdt <- na.omit(overlapdt)
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overlapdt[,range:=as.integer(cut(overlapdtSVs,
breaks=bin,
labels=as.numeric( sub("\\((.+),.*", "\\1", levels(cut(overlapdt[,V5], bin))) ),
)]

# overlapdt[,ar_quant:=as.character(cut(overlapdtSwidth,
breaks=c(quantile(overlapdtSwidth,
probs =seq(0, 1, by = 0.25))
)I
labels=c("1Q","2Q","3Q","4Q"), include.lowest=TRUE
)

H O OB OHF OF R

ol_bef <- overlapdt %>% .[,.N,by=c("range","array",

ol_bef[,range:=-range*(cont_fac/bin)]

ar_size","width","ar_id")]

##FOR GEOM DENSITY

overlapdt[,range:=-range*(cont_fac/bin)]

ol_bef <- overlapdt

B s

#itt#tafter array

glob_tmp <- copy(array_dt[width>330])

glob_tmpl,c("start", "end") := .(end, end + cont_fac)]

setkey(glob_tmp,segnames,start,end)

setkey(genedt,V1,V4,V5)

glob_tmpl,ar_size:=as.character(cut(glob_tmpSwidth,

breaks=c(0,1000,10000,50000)#,
#labels=c("1Q","2Q","3Q"), include.lowest=TRUE
)
]

overlapdt <- foverlaps(genedt,glob_tmp)
overlapdt[,c("V4","end"):=.(V4-end,end-end)]
overlapdt <- na.omit(overlapdt)
overlapdt[,range:=as.integer(cut(overlapdtSV4,
breaks=bin,
labels=as.numeric( sub("\\((.+),.*", "\\1", levels(cut(overlapdt[,V4], bin))) ),

)]

#labels=as.numeric( sub("\((.+),.*", "\\1", levels(cut(overlapdt[,width], 5))) ),
ol_af <- overlapdt %>% .[,.N,by=c("range","array","ar_size","width","ar_id")]
ol_af[,range:=range*(cont_fac/bin)]

#geom_density
overlapdt[,range:=range*(cont_fac/bin)]
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ol_af <- overlapdt
plot_cast_dt <- rbind(ol_bef,ol_af)
limp <- array_dt{width>330,.N,by=array]
setnames(limp,"N","total_N")
plot_cast_dt <- merge(plot_cast_dt,limp,by="array")
plot_cast_dt[,array:=str_replace(array,"Cast2-mix","Cast2'")]
plot_cast_dt[,array:=str_replace(array,"Cast2_pure","Cast2")]
plot_cast_dt[,.N,by=c("array","ar_id","total_N","ar_size","width")] %>%
.LN_scale:=N] %>% .[] %>%
ggplot() +
geom_boxplot(aes(x=array,fill=array,y=N_scale)) +
geom_hline(yintercept = 56,color="black",alpha=0.9,linetype = "dashed")+
geom_hline(yintercept = 15,color="red",alpha=0.6,linetype = "dashed") +
geom_hline(yintercept = 127,color="red",alpha=0.6,linetype = "dashed") +
theme_bw() +
scale_fill_npg() +
theme(legend.position = "none") +
ylab("N genes") +
xlab("")
results <- aov(data=plot_cast_dt[array=="Cast5" &
ar_size=="(1e+04,5e+04]",.N,by=.(range,array)][,range:=as.factor(range)],formula = N~range)
res <- TukeyHSD(results)
grep("Cast5",resS array:range’)
dt <- data.table(resS array:range’, keep.rownames = TRUE)

# scaling

)

limp <- array_dt[width>330,.N,by=array]
setnames(limp,"N","total_N")

plot_cast_dt <- merge(plot_cast_dt,limp,by="array")

plot_cast_dt[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width >
2000),sum(N),by=c("range","ar_size","array")] %>%

ggplot() +

geom_line(aes(x=range,y=V1,color=ar_size)) +

facet_wrap(~array) +

theme_bw() +
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scale_color_npg() +

geom_vline(xintercept = 0,color="red",alpha=0.3,linetype = "dashed") +

scale_x_continuous(labels = mult_format(10000))
plot_cast_dt[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width >
2000),sum(N),by=c("range","ar_size","array","total_N")] %>%

.[,V1:=V1/total_N] %>%

ggplot() +

geom_line(aes(x=range,y=V1,color=ar_size)) +

facet_wrap(~array) +

theme_bw() +

scale_color_npg() +

geom_vline(xintercept = 0,color="red",alpha=0.3,linetype = "dashed") +

scale_x_continuous(labels = mult_format(10000))

plot_cast_dt %>% ggplot() +

geom_histogram(aes(x=N),bins=100) +

facet_wrap(~array,scales="free") + xlab("")
#(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width > 2000)
plot_cast_dt[,array:=str_replace(array,"Cast2-mix","Cast2'")]

plot_cast_dt[,array:=str_replace(array,"Cast2_pure","Cast2")]

plot_cast_dt[,.N,by=c("array","ar_id","total_N","ar_size","width")] %>%
.LN_scale:=N] %>% .[] %>%
ggplot() +
geom_violin(aes(x=array,fill=array,y=N_scale)) +
geom_hline(yintercept = 56,color="black",alpha=0.9,linetype = "dashed")+
geom_hline(yintercept = 15,color="red",alpha=0.6,linetype = "dashed") +
geom_hline(yintercept = 127,color="red",alpha=0.6,linetype = "dashed") +
theme_bw() +
scale_fill_npg()

plot_cast_dt %>% .[] %>%

ggplot() +
geom_density2d_filled(aes(x=width,y=width)) +
theme_bw() +

scale_fill_npg()

#relationship with other repeat elements

i}
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chroms <- readDNAStringSet("./data/TcasONT.fasta")

dt_width <- data.table(names=names(chroms),width=width(chroms))
arrays <- fread("./data/full_array_annot.gff")

arrays <- merge(arrays,dt_width,by.x="V1",by.y="names")

array_dt <- arraysl,c(1,3,4,5,10)]
try(setnames(array_dt,c("v1","v3","v4","V5"),c("seqnames","array","start","end")))
genes_ont <- fread("./data/TcasONT _repeats.gff",skip=0,fill=T,sep="\t")
genes_ont <- genes_ont[V3!="Simple_repeat" & V3!="Low_complexity"]
setnames(genes_ont,c("V1","V4","V5"),c("segnames","start","end"))
genes_ont[start>end, c("end", "start") := .(start, end)]
array_dt[,ar_id:=paste(array,seqnames,as.character(start),sep="_")]
array_dt[,width:=abs(end-start)]

genedt <- genes_ont

cont_fac <- 50000

bin=10
try(setnames(genedt,c("seqnames","start","end"),c("Vv1","v4","V5")))
HitH##HHbef array

glob_tmp <- copy(array_dt[width>330])

glob_tmp[,c("start", "end") := .(start-cont_fac, start)]

glob_tmpl,ar_size:=as.character(cut(glob_tmpSwidth,
breaks=c(0,1000,10000,50000)#,
#labels=c("1Q","2Q","3Q"), include.lowest=TRUE
)
]

setkey(glob_tmp,segnames,start,end)
setkey(genedt,V1,V4,V5)

overlapdt <- foverlaps(genedt,glob_tmp)
overlapdt[,c("V5","start"):=.(V5-start,start-start)]
overlapdt <- na.omit(overlapdt)

overlapdt[,range:=as.integer(cut(overlapdtSVs,
breaks=bin,
labels=as.numeric( sub("\\((.+),.*", "\\1", levels(cut(overlapdt[,V5], bin))) ),

)]

# overlapdt[,ar_quant:=as.character(cut(overlapdtSwidth,
breaks=c(quantile(overlapdtSwidth,
probs =seq(0, 1, by = 0.25))
),
labels=c("1Q","2Q","3Q","4Q"), include.lowest=TRUE

)

H OH T OHF H O
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ol_bef <- overlapdt %>% .[,.N,by=c("range","array","ar_size","width","ar_id")]
ol_bef[,range:=-range*(cont_fac/bin)]

##FOR GEOM DENSITY
overlapdt[,range:=-range*(cont_fac/bin)]
ol_bef <- overlapdt
HEHHHH R
HitH##after array
glob_tmp <- copy(array_dt[width>330])
glob_tmp[,c("start", "end") := .(end, end + cont_fac)]
setkey(glob_tmp,segnames,start,end)
setkey(genedt,V1,V4,V5)
glob_tmpl,ar_size:=as.character(cut(glob_tmpSwidth,
breaks=c(0,1000,10000,50000)#,
#labels=c("1Q","2Q","3Q"), include.lowest=TRUE
)
]
overlapdt <- foverlaps(genedt,glob_tmp)
overlapdt[,c("V4","end"):=.(V4-end,end-end)]
overlapdt <- na.omit(overlapdt)
overlapdt[,range:=as.integer(cut(overlapdtSV4,
breaks=bin,
labels=as.numeric( sub("\\((.+),.*", "\\1", levels(cut(overlapdt[,V4], bin))) ),
)]

#labels=as.numeric( sub("\((.+),.*", "\\1", levels(cut(overlapdt[,width], 5))) ),
ol_af <- overlapdt %>% .[,.N,by=c("range","array","ar_size","width","ar_id")]
ol_aff,range:=range*(cont_fac/bin)]

#geom_density
overlapdt[,range:=range*(cont_fac/bin)]
ol_af <- overlapdt

plot_cast_dt <- rbind(ol_bef,ol_af)

limp <- array_dt[width>330,.N,by=array]
setnames(limp,"N","total_N")

plot_cast_dt <- merge(plot_cast_dt,limp,by="array")
plot_cast_dt[,array:=str_replace(array,"Cast2-mix","Cast2'")]

plot_cast_dt[,array:=str_replace(array,"Cast2_pure","Cast2")]
genes_ont[,cutw:=cut_width(V4,width=100000,labels=F)]

genes_ont][,.N,by=cutw][,summary(N)]
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genes_ont[,.N,by=cutw] %>% ggplot() + geom_histogram(aes(x=N))

plot_cast_dt[ V9!="CR1-3_TCa" & V9!="Gypsy-18 PBa-I"][,.N,by=c("array","ar_id","total _N","ar_size","width")] %>%

ggplot() +

geom_boxplot(aes(x=array,fill=array,y=N)) +

theme_bw() +

scale_fill_npg() +

geom_hline(yintercept = 101,color="black",alpha=0.9,linetype = "dashed")+
geom_hline(yintercept = 35,color="red",alpha=0.6,linetype = "dashed") +
geom_hline(yintercept = 233,color="red",alpha=0.6,linetype = "dashed") +
theme(legend.position = "none") +

xlab("") +

ylab("N TE")

tmp <- genes_ont/[,.N,by=cutw]
tmp[,array:="Genome"]

aov_dt <- rbind(plot_cast_dt[,.N,by=c("array","ar_id","total N","ar_size","width")][,.(array,N)],tmp][,.(array,N)])
aov_dt[,is_genome:="No"]

aov_dt[grep("Cast",array),is_genome:="Yes"]

results <- aov(N~array,data=aov_dt)

TukeyHSD(results)

plot_cast_dt[,.N,by=c("range","array","total_N","ar_size","ar_id")] %>%
.[Lmean(N),by=c("range","array","total_N","ar_size")] %>%
ggplot() +
geom_line(aes(x=range,y=V1,color=ar_size)) +
facet_wrap(~array,scales="free_y") +

theme_bw()

#relationship of ar_size and N_genes, ggridges
i

library(ggridges)

library(colorspace)

options(scipen = 1076)

vec <- plot_cast_dt[,.N,by=ar_id][N>30,ar_id]

geplot(plot_cast_dt[ar_id%in%vec]) +
geom_density_ridges(aes(x=log(width,base=10),y=array),scale=1)

a = ggplot(plot_cast_dt[width>500],aes(height = stat(density))) +
theme_minimal() +
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geom_density_ridges(aes(x=width,y=array,fill=array),scale=2,alpha=0.5) +
scale_x_continuous(trans="log10",limits=c(500,100000)) +
scale_fill_discrete_diverging() +

theme(legend.position = "none")

b = ggplot() +
geom_density_ridges(data=array_dt[width>500],aes(x=width,y=array,fill=array),scale=2,alpha=0.5) +
theme_minimal() +
ylab("") +
scale_x_continuous(trans="log10",limits=c(500,100000)) +
scale_fill_discrete_diverging() +
theme(legend.position = "none",

axis.text.y = element_blank())

plot_cast_dt_densities <- plot_cast_dt %>%
group_by(array) %>%
group_modify(~ ggplot2:::compute_density(.xSwidth, NULL)) %>%
rename(width = x)

geplot(plot_cast_dt[width>500], aes(x = width, y = array, height = stat(density))) +
geom_density_ridges(stat = "binline",bins=20,scale=1) +
theme_minimal() +
ylab("") +
scale_x_continuous(trans="log10",limits=c(500,100000)) +
scale_fill_discrete_diverging() +
theme(legend.position = "none")

geplot(plot_cast_dt_densities, aes(x = width, y = array, height = density)) +
geom_density_ridges(stat = "identity") +
theme_minimal() +
ylab("") +
scale_x_continuous(trans="log10",limits=c(1,100000)) +
scale_fill_discrete_diverging() +
theme(legend.position = "none")

as.data.table(plot_cast_dt_densities)[array=="Cast5"]

array_dt[width>500,.N,by=array]

dt <- plot_cast_dt[width>500,.N,by=c("array","width")] %>% .[,width_bin:=cut_width(width,width=1000)]
plot_cast_dt[,width_bin:=cut_width(width,width=1000)]

165



plot_cast_dt[,.N,by=ar_id] %>% ggplot() + geom_histogram(aes(N))
plot_cast_dt[,.N,by=ar_id][,summary(N)]

plot_cast_dt[,.N,by=c("ar_id","array")] %>% ggplot() + gecom_col(aes(x=ar_id,y=N)) +
facet_wrap(~array,scales="free_x")

options(scipen = 1076)

high_gene_arrays <- plot_cast_dt[,.N,by=ar_id][N>0,ar_id]
plot_cast_dt[width>500 & ar_id%in%high_gene_arrays] %>% ggplot() +
geom_density_2d_filled(aes(x=width,range),contour_var = "ndensity",geom="raster") +
facet_wrap(~array) + theme_bw() + scale_fill_discrete_divergingx() +
scale_x_continuous(trans="log10",limits=c(500,100000))
high_gene_arrays <- plot_cast_dt[,.N,by=ar_id][N>71.50,ar_id]
plot_cast_dt[width>500 & ar_id%in%high_gene_arrays] %>% ggplot() +
geom_density_2d_filled(aes(x=width,range),contour_var = "ndensity") +
facet_wrap(~array) + theme_bw() + scale_fill_discrete_divergingx() +
scale_x_continuous(trans="log10",limits=c(500,100000))
high_gene_arrays <- plot_cast_dt[,.N,by=ar_id][N>132.00,ar_id]
plot_cast_dt[width>500 & ar_id%in%high_gene_arrays] %>% ggplot() +
geom_density 2d filled(aes(x=width,range),contour_var = "ndensity") +
facet_wrap(~array) + theme_bw() + scale_fill_discrete_divergingx() +
scale_x_continuous(trans="log10",limits=c(500,100000))

Supplementary Code 6. Size profiles of Cast1-Cast9 satDNAs in both the assembly and raw reads

)
source("blast_functions.R")
library(data.table)
library(Biostrings)

library(tidyverse)

(

(
library(stringr)
(
library(ggplot2)

# cast array size distribution

1)

#not public reads
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sat_cont_reads_cor <- blast_to_gff(q_name = "casts_19.fasta",s_name ="t_cast_20k.correctedReads.fasta",work_dir =

"E:/t_cast_assembly/assembly _analysis/",name="blast_sat_reads")

#fwrite(sat_cont_reads,"E:/t_cast_assembly/assembly analysis/sat_cont_reads.tsv")

names <- unique(ext_table[,variable])
ext_fact <- ¢(250,250,250,250,250,1000,250,500,250,250)
ext_fac_dt <- data.table(names,ext_fact)

for (i in ext_fac_dt[,names])
{
print(i)
ext_factor <- ext_fac_dt[names==i,ext_fact]
sat_copy <- copy(sat_cont_reads[feature==i])
sat_copy[,enE:=end+ext_factor]
result <- sat_copy %>% makeGRangesFromDataFrame() %>% reduce() %>% as.data.table()
result,array:=i]
result[,width:=width-ext_factor]

if (i=="Cast1")
{
array_dt_reads <- result
}
if (i 1="Cast1")
{
array_dt_reads <- rbind(array_dt_reads,result)
}

#if cast2 array has a cast2-prime within 170 bp beofre or after it is a Cast2-prime array
cast2_array_dt <- array_dt_reads[array=="Cast2"]
cast2_array_dt[,ar_id:=paste(segnames,start,sep="_")]

cast2_array_dt[,c("start", "end") := .(start-170, end+170)]

cast_prime_array_dt <- array_dt_reads[array=="Cast2-prime"]
cast_prime_array_dt[,ar_id:=NULL]

setkey(cast2_array_dt,seqnames,start,end)
setkey(cast_prime_array_dt,seqnames,start,end)

ar_ids_with_cast_prime <- foverlaps(cast2_array_dt,cast_prime_array_dt) %>% na.omit() %>% .[,ar_id]

167



new_arrays <- foverlaps(cast2_array dt,cast_prime_array_dt) %>% na.omit()

final_array_number <- new_arrays[,c("segnames","start","end","i.end","ar_id","i.width","i.start")] %>%
[i.start<start,start:=start-i.width] %>%
.[end>i.end,i.enE:=end] %>%
.[end<i.end,i.enE:=i.end-170] %>%
makeGRangesFromDataFrame(start.field = "start",
end.field = "i.end",
segnames.field = "seqnames") %>%
reduce() %>%
as.data.table()

#if cast2-prime

array_dt_reads[array=="Cast2",ar_id:=paste(seqnames,start,sep="_")]

array_dt_reads[array=="Cast2" & ar_id%notin%ar_ids_with_cast_prime,array:="Cast2_pure"]

final_array_number|,array:="Cast2-mix"]

array_dt_reads <- rbind(array_dt_reads[array!="Cast2" & array!="Cast2-prime"],final_array_number,fill=TRUE)
array_dt_reads[width>330] %>% ggplot() + geom_histogram(aes(x=log(width,base=10),fill=array),bins=50) +

facet_wrap(~array,scales="free") + scale_fill_npg()

#cast array profiles grid arrange

1)

a=0

b=3000

¢c=600

labs <- pasteO(seq(from=a,to=b/5,by=c/5))

breaks<- seq(from=a/5,to=b,by=c)
options(scipen=100000)

pl<-array_dt_reads[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width > 2000)] %>% ggplot() +

geom_histogram(aes(x=width,fill=array),bins=50) +
facet_wrap(~array,scales="free",ncol=2) +
scale_x_continuous(trans="log10") +
scale_fill_npg() +

theme_bw()

# scale_y continuous(labels = mult_format(50))
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p2 <- array_dt[(array!="Cast2-mix" & width>530) | (array=="Cast2-mix" & width > 2000)] %>% ggplot() +
geom_histogram(aes(x=width,fill=array),bins=50) +
facet_wrap(~array,scales="free",ncol=2) +
scale_x_continuous(trans="log10") +
scale_fill_npg() +
theme_bw()

grid.arrange(p1, p2, nrow = 1)

#LGX size comparison

1)

library(AlCcmodavg)

array_dt <- fread("./data/full_array_annot.gff") %>% setnames(gff _colnames)
array_dt[,width:=abs(end-start)]

array_dt %>% ggplot() + geom_boxplot(aes(x=segnames,y=log(width1,base=10) fill="ba")) + theme_bw() +
scale_fill_grey(start=0.7,end=0.7)

array_dt %>% ggplot() + geom_boxplot(aes(x=segnames,y=width1,fill="ba")) + theme_bw() +
scale_fill_grey(start=0.7,end=0.7)
t.test(array_dt[segnames!="LGX",log(width1,base=10)],array_dt[seqnames=="LGX",log(width1,base=10)])
wilcox.test(array_dt[width>350 & segnames!="LGX",width1],array_dt[width>350 &segnames=="LGX",width1])
array_dt[,ar_width := end-start]

| <- array_dt[,.N,by=segnames][,array_per_mb := N*¥*10"6/width]

array_dt[,c("segnames","width1")] %>% as.tibble() %>% tbl_summary(.,by=c("width1"))
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Supplementary Code 7. Creating ggbio and circos plots of the TcasONT assembly

i
library(ComplexHeatmap)
library(data.table)
library(Biostrings)
library(stringr)
library(tidyverse)
library(ggplot2)

non non non non

,"source","type","start",

non non

gff colnames <- c("seqnames end","score","strand","tag","name")

array_dt <- fread("assembly_analysis/full_array_annot.gff") %>% setnames(gff colnames)
#ggbio distribution of cast elements on differen chromosomes

)
library(ggbio)

#namefix

array_dt[,levels:=as.numeric(str_extract(type,"\\d"))]

array_dt[,width:=end-start]

|eV <_ C(”LGZ”, |IL63II, |ILG4II, ”LGS”, ”LG6”, HLG7I|, ”LGS”, IlLGgH, I|LGlOI|,I|LGXH)
array_dt[,seqnames:=factor(segnames,levels=lev)]

#tmp <- rbind(array_dt[(array!="Cast2-mix" & width>100) | (array=="Cast2-mix" & width >
1000)],array_dt_sat[width>350],fill=TRUE)
array_dt[,levels:=as.numeric(str_extract(type,"\\d"))]

autoplot(makeGRangesFromDataFrame(array_dt,keep.extra.columns =
TRUE),layout="karyogram",aes(fill=type,color=type,
ymin = (levels - 1) * 10/9, ymax = levels * 10/9))

autoplot(makeGRangesFromDataFrame(array_dt,keep.extra.columns = TRUE),
layout="karyogram",
aes(fill=type,color=type),alpha=1) +
scale_fill_npg() +
scale_color_npg() +
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theme(panel.grid = element_blank(),
axis.ticks = element_blank(),
axis.text.y = element_blank())

#circos

##tfuns

)
windowize <- function (x,dt,len)
{
starts <- seq(from=dt[x,min],to=dt[x,max]-len,by=len)
ends <- seq(from=dt[x,min]+len,to=dt[x,max],by=len)
out_dt <- data.table(segnames=dt[x,seqnames],start=starts,end=ends)
return(out_dt)}

#make windows from a data table start end function

diw_fun <-

function(dt_f,window=6,colvec=c("#4DBBD5B2","#DC0O000B2" ),loged=FALSE,return_hits=FALSE,filter_hits=1000)
{

dt <- copy(dt_f)

chr_range <- chr_range dt

i=window
win_size = 10/(i)

chr_range_glob_dt <- data.table()
for (iin 1:nrow(chr_range))

chr_range_glob_dt <- rbind(chr_range_glob_dt,windowize(i,chr_range,win_size))

}

chr_range_glob_dt<<-chr_range glob_dt

windows <- makeGRangesFromDataFrame(chr_range_glob_dt,ignore.strand = TRUE)
gr <- makeGRangesFromDataFrame(dt,keep.extra.columns = TRUE)

hits_dt <- windows[subjectHits(findOverlaps(gr,windows))] %>%

as.data.table(.) %>% .[,.N,by=c("seqnames","start","end")] %>% setnames(.,"N","hits")

cols <- chind(colo=colorRampPalette(colvec)(max(hits_dt[,hits])),hits=1:max(hits_dt[,hits])) %>%
as.data.table %>%
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.[,hits:=as.integer(hits)]

if (loged == TRUE)

{
hits_out <<-hits_dt

cols <- chind(colo=colorRampPalette(colvec)(max(log(hits_dt[, hits],base=2))-min(log(hits_dt[,hits]))),

hits=min(log(hits_dt[,hits])):max(log(hits_dt[,hits],base=2)))%>%
as.data.table %>%
.[Lhits:=as.integer(hits)]
cols_out <- cols
hits_dt[,hits:=round(sqrt(hits),0)]

bed out <- merge(hits_dt,cols) %>% as.data.frame()

if (return_hits==TRUE)
{
bed <- merge(hits_dt,cols)[hits>filter_hits] %>%
[ hits:=NULL] %>%
as.data.table()
return(bed)
}else {
bed <- merge(hits_dt,cols) %>% .[,hits:=NULL] %>% as.data.frame()
return(bed)
}

#plotting

“r)
ONT_assembly <- readDNAStringSet("./data/TcasONT.fasta")[1:10]

#loading genes

genes_ont <- fread("./data/TcasONT_genes.gff" fill=T,sep="\t")
genes_ont <- genes_ont[V3=="gene"]
setnames(genes_ont,c("V1","V4","V5"),c("segnames","start","end"))
genes_ont[start>end, c("end", "start") := .(start, end)]

genes_ont <- genes_ont[start<end,c("seqnames","start","end")]
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#loading repeat elements
repeats <- fread("./data/TcasONT _repeats.gff",fill=TRUE) %>%
merge(.,name_links,by.x="seqnames",by.y="V7") %>% .[,seqnames:=V3] %>% .[,V3:=NULL]

)

#init range dt

chr_range_dt <-

data.table(seqnames=str_remove(names(ONT_assembly)," RagTag.+"),min=1,max=width(ONT_assembly)) %>% mer
ge(.,name_links,by.x="seqnames",by.y="V7") %>% .[,seqnames:=V3] %>% .[,V3:=NULL]

#sattetlies are ready

new_ch <- chind("Empty_space",1,20000000) %>% data.table()

chr_range_dt 2 <- rbind(chr_range_dt,new_ch,use.names=FALSE)

chr_range_dt 2[,max:=as.double(max)]

chr_range_dt_2[,min:=as.double(min)]

col_fun = colorRamp2(c(0, 1), c("#4DBBD5B2","#DC0O000B2"))

lgd = Legend(col_fun = col_fun, title = "Relative abundancy",at=c(0,1),labels = c("Low","High"))

grid.rect()

draw(lgd, x = unit(1, "cm"), y = unit(1, "cm"), just = c("left", "bottom"))
popViewport()

)

TCAST_dt <- sat_cont_dt[grep("TCAST" feature)] %>% .[,c("seqnames","start","end")] #%>% .[grep("NC",seqnames)]
TCAST_dt[,seqnames:=str_remove(seqnames," RagTag")]

HTCAST_dt <- merge(TCAST_dt,name_links,by.x="segnames",by.y="V7") %>% .[,seqnames:=V3] %>% .[,V3:=NULL]
TCAST_dt <- TCAST dt[grep("LG",seqgnames)]

cast_dt <- sat_cont_dt[grep("Cast",feature)][feature!="Cast7"] %>% .[,c("segnames","start","end")]

#%>% .[grep("NC",seqgnames)]

cast_dt[,segnames:=str_remove(seqnames," RagTag")]

#cast_dt <- merge(cast_dt,name_links,by.x="seqnames", by.y="V7") %>% .[,seqnames:=V3] %>% .[,V3:=NULL]
cast_dt <- cast_dt[grep("LG",segnames)]

lgd_LINE = Legend(at = c(-2,2),col_fun =)
draw(lgd, x = unit(1, "cm"), y = unit(1, "cm"), just = c("left", "bottom"))
)

colorRampPalette(colvec)(10)
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|eV <- C(”LGZ”, nLng, ”LG4”, ”LGS”, ”LG6”, ”LG7”, IILGSH' ”Lng, ”LG]_O”,”LGX”)
array_dt[,seqnames:=factor(segnames,levels=lev)]

circos.par("track.height"=0.1)
circos.genomiclnitialize(chr_range_dt_2)
circos.genomicTrack(diw_fun(genes_ont,window = 6), stack = TRUE,
panel.fun = function(region, value, ...) {
i=getl(...)
circos.genomicRect(region, value, ytop =i+ 0.6, ybottom =i- 0.6,
col = valueScolo,border = valueScolo, ...)
})
circos.genomicTrack(diw_fun(repeats[class!="Simple_repeat" & class!="Low_complexity"],loged = FALSE,window = 6),
stack = TRUE,
panel.fun = function(region, value, ...) {
i =getl(...)
circos.genomicRect(region, value, ytop =i+ 0.6, ybottom =i- 0.6,
col = valueScolo,border = valueScolo, ...)
1)
circos.genomicTrack(diw_fun(array_dt,window = 6), stack = TRUE,
panel.fun = function(region, value, ...) {
i=getl(...)
circos.genomicRect(region, value, ytop =i+ 0.6, ybottom =i- 0.6,
col = valueScolo,border = valueScolo,...)
1)
hits_out
vl <- diw_fun(genes_ont,window = 5,return_hits = FALSE) %>% .[order(seqnames,start)]
v2 <- diw_fun(array_dt,window = 6.5,return_hits = FALSE) %>% .[order(segnames,start)]
vl[,merge_id:=paste(seqnames,start,sep="_")]
v2[,merge_id:=paste(seqnames,start,sep="_")]
vl <- merge(vl,v2,by="merge_id")
vl %>% ggplot() + geom_point(aes(x=hits.x,y=hits.y))
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Supplementary Code 8. Monomer consensus and junction regions of Cast1-Cast9 satDNAs in the
assembly

# izvlatenje monomernih sekvenci castova s kromosoma
)

library("dplyr")

library("data.table")

library("BSgenome")

msa")

rvcheck")

ggtree")

"ape")

library("metablastr")

library(GenomicRanges)

(
(
("
library("
library("
(
(
(
(

library
library

source("blast_functions.R")
#extracting monomers from assembly

)
sat_cont_dt <- blast_to_gff(q_name = "casts_19.fasta",s_name = "TcasONT.fasta",
work_dir ="./data/",name="blast_sat_assembly")

chroms <- readDNAStringSet("./data/TcasONT.fasta")
sat_cont_dt[,direction:="5-prime"]
sat_cont_dt[s_start>s_end,direction:="3-prime"]

sat_cont_dt[s_start>s_end, c("s_end", "s_start") := .(s_start, s_end)]
sat_cont_dt <- sat_cont_dt[grep("LG",subject_id)] %>% .[grep("Cast",query_id)]

for (i in unique(sat_cont_dt[,query_id]))

{

sat_cont_dt_temp <-sat_cont_dt[query_id==i]

i

crom_monomers <- sat_cont_dt_temp %>% makeGRangesFromDataFrame(seqnames.field = "subject_id",start.field =
"s start",end.field ="s_end" keep.extra.columns = TRUE)

seqs <- getSeq(chroms[1:10],crom_monomers)

seqs[sat_cont_dt_tempSdirection=="3-prime"]<-reverseComplement(seqs[sat_cont_dt_tempSdirection=="3-prime"])
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names(seqs) <- sat_cont_dt_templ,paste(query_id,subject_id,s_start,sep="_")]

writeXStringSet(seqs,paste0("./data/phylogeny/",i,"_monomers.fasta"))
}

#extracting junction regions

)

dt_width <- data.table(names=names(chroms),width=width(chroms))

arrays <- fread("E:/t_cast_assembly/assembly analysis/full_array_annot.gff")
arrays <- merge(arrays,dt_width,by.x="V1",by.y="names")

arrays[,bef_start:=V4-499]
arrays[,bef_end:=V4]
arrays[,aff_start:=V5]
arrays[,aff_end:=V5+499]

arrays[bef start<0,bef start:=1]
arrays[bef end<0,bef end:=1]

arrays[aff_start>width,bef start:=width]
arrays[aff_end>width,aff _end:=width]

gr_bef<- gr <- arrays %>% makeGRangesFromDataFrame(start.field = "bef_start",end.field = "bef_end",seqnames.field

= |IV1|I)
seqgs_bef <- getSeqg(chroms,gr_bef)
names(seqs_bef) <- arrays[,paste0(V3," ",V1," ",V4)]

gr_af<- gr <- arrays %>% makeGRangesFromDataFrame(start.field = "aff_start",end.field = "aff_end",seqnames.field =

"V1")

seqgs_aff <- getSeq(chroms,gr_af)

names(seqs_aff) <- arrays[,pasteO(V3," ", v1," ",V4)]
for (i in unique(arrays[,V3]))

{

tmp_segsa_bef <- seqgs_bef[grep(i,names(seqs_bef))]

tmp_seqsa_af <- seqs_aff[grep(i,names(seqs_aff))]
names(tmp_seqgsa_bef) <- pasteO(names(tmp_seqsa_bef)," before")
names(tmp_seqgsa_af) <- pasteO(names(tmp_seqsa_af)," after")

c(tmp_seqsa_bef,tmp_seqgsa_af) %>%

writeXStringSet(pasteO("E:/t_cast_assembly/assembly analysis/junction_regions_revamp/",i,".500bp.around_regions.f

asta"))
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#distance matrices and heatmaps
i
# load package
library(pheatmap)
library("ComplexHeatmap")
library(circlize)
library("multipanelfigure")
namevec <- c¢("Cast1","Cast2-mix","Cast2_pure","Cast3","Cast4","Cast5","Cast6","Cast7","Cast8","Cast9")
myplots <- list()
for(i in namevec)
{
dt <- fread(pasteO("./data/matrices/",i,".matrix.csv")) %>% as.data.frame(row.names = "V1")
dtSV1 <- NULL
#dt=max(dt)-dt
col_fun = colorRamp2(c(0,50,100), c("#1A5276","#FAED7E", "#AD3212"))
obj = paste0(i,"heatmap")
hl=Heatmap(as.matrix(dt),show_column_names = FALSE,col = col_fun,column_title=i,name="",
heatmap_legend param = list(
title = "similarity", at = ¢(0, 50, 100)
)
myplots[[i]] <- h1
png(paste0("./data/matrices/",i," heatmap.png"),width=1024,height=1024)
draw(h1)
dev.off()
}
getwd()
figurel <- multi_panel_figure(
width = 350, height = 350,
columns = 3, rows = 4,unit = "mm")

for (iin 1:10)

{

h1 <- myplots([i]]

figurel %<>% fill_panel(h1)

}
figurel

)
dt <- readxl::read_xIsx("E:/Supplementary tables.xlsx",sheet = "12_K-S",skip = 1)

vec <- c(dtS Significatly more genes’,dtS Significantly less genes’)
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Supplementary Code 9. PCA and UMAP plots of Cast1-Cast9 satDNAs

i
library(ape)
library(colorspace)
library(FactoMineR)
library(ggplot2)
library(dplyr)
library(data.table)

#PCA trees

)
names <- ¢("Cast1","Cast2","Cast2-prime","Cast3","Cast4","Cast5","Cast6","Cast7","Cast8","Cast9")

for (i in names)

{
print(i)

msa <- readDNAMultipleAlignment(paste0("./data/monomers/",i," fasta.aligned"),
format="fasta")
print("done reading data")
x <- dist.dna(as.DNAbin(msa),model="F81",as.matrix=TRUE, pairwise.deletion=TRUE)
print("done distance")
matrix <- as.data.table(x,row.names="v1")
fwrite(matrix,paste0("assembly_analysis/phylogeny/consensus_monomers/",i,".aligned.matrix.csv"))
pca_res <- PCA(matrix)

print("PCA donte")
saveRDS(pca_res, file = paste0("./data/monomers/",i,".aligned.PCA.rds"))
}

dt_tot <- data.table()
eig_tot <- data.table()
for (i in names)

{
pca_res <- readRDS(paste0("./data/monomers/",i,".aligned.PCA.rds"))

dt <- pca_resSvarScoord %>% as.data.table(keep.rownames = TRUE)
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dt[,chr:=str_extract(rn,"LG(\\d+|X)")]

dt[,name:=i]

eigenvalues <- pca_resSeig %>% as.data.table(keep.rownames = TRUE)
eigenvalues <- eigenvalues[1:10]

eigenvalues[,name:=i]

eigenvalues[,val:=1:10]

eig_tot <- rbind(eig_tot,eigenvalues)

dt_tot <- rbind(dt_tot,dt)

1

qualitative_hcl(10,c=100)
dt_tot %>% ggplot() + geom_point(aes(x=Dim.1,y=Dim.2,color=chr,fill=chr),alpha=0.8,size=0.1) +
theme_bw() +
scale_color_discrete_qualitative(c1=100) +
facet_wrap(~name,scales="free",ncol=5) +
xlab("PC1") +
guides(color = guide_legend(override.aes = list(size = 3))) +
ylab("PC2") + theme(legend.position = "none")

eig_tot[,mean(‘percentage of variance’),by=c("name","val")] %>%
geplot() + geom_col(aes(x=as.factor(val),y=V1),color="black" fill="#4cb9d2") +
xlab("Principal Component") +
theme_bw() + facet_wrap(~name)

LY XM
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Supplementary Code 10. Graph network plots

title: "R Notebook"
output: html_notebook

i
library(ape)
library(networkD3)
library(dplyr)
library(stringr)
library(data.table)

)
chr_vec<- ¢("LG10","LG2","LG3","LG4","LG5","LG6","LG7","LG8","LGY","LGX")
vec <- qualitative_hcl(10,c=100)

cat(chr_vec,sep="\",\"")

cat(vec,sep="\"\"")

#change according to alignmet

alignment_path ="./data/filtered_monomers/Cast2_aligned.fasta"

var <- "Cast2"
msa <- readDNAMultipleAlignment(alignment_path,format="fasta")
matrix <- dist.dna(as.DNAbin(msa),model="F81",as.matrix=TRUE,pairwise.deletion=TRUE) %>% as.data.table()

i ="Cast2"

matrix <- fread(paste0("./data/filtered_monomers/",i,".aligned.matrix.csv"))
names <- colnames(matrix)

matrix <- cbind(names,matrix)

colnames(matrix) <- str_remove(colnames(matrix),paste0("_",var))
matrix[,names:=str_remove(names,paste0("_",var))]
matrix[,name_id:=str_extract(names,"LG(\\d+|X)_\\d+")]

dt <- melt(matrix,id.vars=c("names","name_id"))
dt[,var_id:=str_extract(variable,"LG(\\d+|X)_ \\d+")]

|d_ar_dt <- dt[var_id!=name_id]
#calculate mean distances between arrays
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Id_ar_dt[,mval:=mean(value,na.rm = TRUE),by=.(var_id,name_id)]
#find the closest array for each array
Id_ar_dt[,mmval:=min(mval,na.rm = TRUE),by=.(name_id)]
tmp <- unique(ld_ar_dt[order(mval)][,.(var_id,name_id,mval)])[, head(.SD, 5), by=.(var_id)]
tmp <- tmp[order(var_id)]
g <-igraph::graph_from_data_frame(tmp,directed=F )
p <-igraph_to_networkD3(g)
pSnodesSgroup = str_extract(pSnodesSname,"LG(\\d+]|X)")
#pSlinksSvalue = 1/pSlinksSvalue
graph = forceNetwork(Links = pSlinks, Nodes = pSnodes, Source = 'source’,
Target = 'target’, NodelD = 'name’, Group = 'group', Value = "value",
zoom = TRUE, linkDistance = 30,
linkWidth =1,
arrows = FALSE,
charge=-50,
legend = TRUE, opacity = 0.8,

colourScale=JS('d3.scaleOrdinal(["#FO5E84","#AES000","#66A200", "#OOAE48","#00B39C","#O0ABD7", "#3892F9"

,"#HC16AF4","#HEES0C9"],
[IILG1OII'IIL63II’IILGAII’IILGSII’IILGGII,IILG7II,I|LGSII'IIL69II,HLGXII]);I)I
bounded = FALSE)

htmlwidgets::saveWidget(graph,file = pasteO(var,".html"))

O O
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Supplementary Code 11. Rust code for generating the k-mer counting program using in edge detection,

main.rs

use bio;

use std::{error::Error, str::FromStr};
use std::fs::File;

use bio::io::fasta;

use std::fs;

use debruijn::*;

use debruijn::kmer::*;

use ndarray::{ Array2,ArrayBase,OwnedRepr,Dim};
mod utils;

mod ploting;

use ploting::plot_roll_mean;

use std::io::Write;

use rayon::prelude::*;

use log::info;

use env_logger;

fn process_fasta(sequence_path: &str, monomer_path: &str,outpath: &str) -> Result<(), Box<dyn

let file = File::open(sequence_path)?;
let reader = fasta::Reader::new(file);

infol("Processing {} -> {}",sequence_path,monomer_path);
let kmers_in_monomer = utils::create_kmers_from_sat(monomer_path).unwrap();

reader.records().par_bridge().for_each(|result]| {

let record = result.expect("Error during fasta record parsing");
let kmers = Kmer32::kmers_from_ascii(record.seq());
let mut dist_mat: ArrayBase<OwnedRepr<u32>,

Dim<[usize; 2]>> = Array2::zeros((kmers.len(), kmers.len()));
let mut kmer_in_array_pos_dist: Vec<i32> = Vec::new();

foriin 0..kmers.len() {

let mut dist_vec: Vec<u32> = Vec::new();
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for zin 0..kmers_in_monomer.len()-1 {

let dist = kmers[i].namming_dist(kmers_in_monomer(z]);
dist_vec.push(dist)

let min = dist_vec.iter().cloned().min().unwrap();
kmer_in_array_pos_dist.push(min asi32)

let roll_mean: Vec<f64> = utils::calculate_means_around_index(&kmer_in_array_pos_dist);

let = plot roll_mean(&record,roll_mean.clone(),outpath);

//writing the kmer tables, both the pos in array and the roll mean

let outf = outpath;

let outfn = outf.to_owned()+"/data/" + &record.id().to_string().to_owned() +"_kmers_in_mono.txt";

let mut file = File::create(outfn).unwrap();

writeln!(file, "index\tactual\troll_mean").unwrap();

for (i, (elem1, elem2)) in kmer_in_array_pos_dist.iter().zip(roll_mean.clone().iter()).enumerate() {
writeln!(file, "{\t{\t{}", i, elem1, elem2).unwrap();

fninit_logger() {
// Read the RUST_LOG environment variable or use a default log level
let log_level = std::env:var("RUST _LOG").unwrap_or_else(|_| String::from("info"));

// Initialize the logger with the specified log level

env_logger::Builder::from_default_env()
filter_level(log::LevelFilter::from_str(&log_level).unwrap())
.init();
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fn remove_all_files_and_folders_in_folder(folder_path: &str) -> std::io::Result<()> {
// Read directory entries and remove each file or subfolder
for entry in fs::read dir(folder_path)? {
let entry = entry?;
let path = entry.path();

if path.is_file() {
fs::remove_file(&path)?;
printin!("Deleted file: {:?}", path);
}else if path.is_dir() {
fs::remove dir all(&path)?;
printin!("Deleted folder: {:?}", path);
}

Ok(())
}

fn main() {
init_logger();

let folder_path: &str ="./results/kmer_analysis";
let data_path: &str ="./results/kmer_analysis/data/";
let pic_path: &str ="./results/kmer_analysis/pictures/";

// Create the folder if it doesn't exist
if let Err(err) = fs::create_dir(folder_path) {
if err.kind() != std::io::ErrorKind::AlreadyExists {
eprintIn!("Error creating folder: {:?}", err);
return;

// Check if the folder is not empty

let is_empty = fs::read_dir(folder_path)
.map(|entries| entries.count() == 0)
.unwrap_or(true);

if lis_empty {
// Delete all files in the folder
if let Err(err) = remove_all files_and folders_in_folder(&folder_path) {
eprintin!("Error deleting files: {:?}", err);
return;
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infol("All files in the folder have been deleted.");
}else {
printin!("The folder is empty.");

}

// create new data and folder paths
if let Err(err) = fs::create_dir(data_path) {
if err.kind() != std::io::ErrorKind::AlreadyExists {
eprintin!("Error creating folder: {:?}", err);
return;

if let Err(err) = fs::create_dir(pic_path) {
if err.kind() != std::io::ErrorKind::AlreadyExists {
eprintin!("Error creating folder: {:?}", err);
return;
1
}

let json_file = "pairs.json";

// Read the JSON file
let pairs = utils::read_json_file(json_file);

// Print the Monomer-Array Pairs
infol(
"Doing edge finding for the following RU:Array pairs: \n {}",
pairs.iter()
.map(|(monomer, array)| format!("{} -> {}", monomer, array))
.collect::<Vec<String>>()
Join("\n")
);
pairs.iter().for_each(|(monomer, array)| {
let = process fasta(array,monomer, folder_path);

1;
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Supplementary Code 12.Rust helper reader function code for generating the k-mer counting program
using in edge detection, utils.rs

use bio;
use serde_json::Error;

use std::fs::File;

use bio::io::fasta;

use debruijn::*;

use debruijn::kmer::*;

use std::io::{self, Write};

use std::collections::HashMap;
use std::io::BufReader;

use serde::{Deserialize, Serialize};
use std::io::{Read};

//function creates a hash table of all kmers in a sattellite, will be expanded into iterator over
// multiple fasta files
pub fn create_kmers_from_sat(mononomer_path: &str) -> Result<Vec<IntKmer<u64>>, std::io::Error>{

let fasta_file = File::open( mononomer_path)?;
let mut kmer_total: Vec<IntKmer<u64>> = Vec::new();

let reader = fasta::Reader::new(fasta_file);
for result in reader.records() {

let record = result.expect("Error during fasta record parsing");

let newseq = Vec:from_iter(record.seq().iter().cloned().chain(record.seq().iter().cloned()));
let k32_tmp = Kmer32::kmers_from_ascii(&newseq);

‘outer: foriin k32_tmp.iter().to_owned() {
forjin kmer_total.iter().to_owned(){

if i.hamming_dist(*j)==0 {
break 'outer;

}

kmer_total.push(*i)
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printin!("\nNumber of unique kmers: {} in {\n",kmer_total.len(),mononomer_path);
return Ok(kmer_total)

}

#[derive(Debug, Deserialize, Serialize)]

struct MonomerArrayPair {
monomer_path: String,
array_path: String,

pub fn get_monomer_array_pairs() -> Result<HashMap<String,String>,std::io::Error> {
let json_file = "pairs.json";

// Read the JSON file
let pairs = read_json_file(json_file);

// Print the Monomer-Array Pairs

printin!("Monomer-Array Pairs:");

for (monomer_path, array_path) in &pairs {
printin!("{} -> {}", monomer_path, array_path);

1
return Ok(pairs)

pub fn calculate_means_around_index(data: &[i32]) -> Vec<f64> {
let mut means = Vec::new();

foriin 10..(data.len() - 10) {
let sum: 32 = data[i - 5..=i + 10].iter().cloned().sum();
let count = 21.0; // Count of elements in the range [i - 5, i + 5]

let mean = f64::from(sum) / count;

means.push(mean);

means
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pub fn read_json_file(json_file: &str) -> HashMap<String, String> {
// Open the JSON file

let file = File::open(json_file).expect("Failed to open JSON file");
let reader = BufReader::new(file);

// Deserialize the JSON content into a HashMap<String, String>
let pairs: HashMap<String, String> = serde_json::from_reader(reader).expect("Failed to deserialize JSON");

pairs
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Supplementary Code 13.Rust plotting functions code for generating the k-mer counting program using
in edge detection, plotting.rs

use bio;
use serde_json::Error;

use std::fs::File;

use bio::io::fasta;

use debruijn::*;

use debruijn::kmer::*;

use std::io::{self, Write};

use std::collections::HashMap;
use std::io::BufReader;

use serde::{Deserialize, Serialize};
use std::io::{Read};

//function creates a hash table of all kmers in a sattellite, will be expanded into iterator over
// multiple fasta files
pub fn create_kmers_from_sat(mononomer_path: &str) -> Result<Vec<IntKmer<u64>>, std::io::Error>{

let fasta_file = File::open( mononomer_path)?;
let mut kmer_total: Vec<IntKmer<u64>> = Vec::new();

let reader = fasta::Reader::new(fasta_file);
for result in reader.records() {

let record = result.expect("Error during fasta record parsing");

let newseq = Vec:from_iter(record.seq().iter().cloned().chain(record.seq().iter().cloned()));
let k32_tmp = Kmer32::kmers_from_ascii(&newseq);

‘outer: foriin k32_tmp.iter().to_owned() {
forjin kmer_total.iter().to_owned(){

if i.hamming_dist(*j)==0 {
break 'outer;

}

kmer_total.push(*i)
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printin!("\nNumber of unique kmers: {} in {\n",kmer_total.len(),mononomer_path);
return Ok(kmer_total)

}

#[derive(Debug, Deserialize, Serialize)]

struct MonomerArrayPair {
monomer_path: String,
array_path: String,

pub fn get_monomer_array_pairs() -> Result<HashMap<String,String>,std::io::Error> {
let json_file = "pairs.json";

// Read the JSON file
let pairs = read_json_file(json_file);

// Print the Monomer-Array Pairs

printin!("Monomer-Array Pairs:");

for (monomer_path, array_path) in &pairs {
printin!("{} -> {}", monomer_path, array_path);

}
return Ok(pairs)

pub fn calculate_means_around_index(data: &[i32]) -> Vec<f64> {
let mut means = Vec::new();

foriin 10..(data.len() - 10) {
let sum: i32 = data[i - 5..=i + 10].iter().cloned().sum();
let count = 21.0; // Count of elements in the range [i - 5, i + 5]

let mean = f64::from(sum) / count;

means.push(mean);

means
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pub fn read json file(json_file: &str) -> HashMap<String, String> {
// Open the JSON file
let file = File::open(json_file).expect("Failed to open JSON file");
let reader = BufReader::new(file);

// Deserialize the JSON content into a HashMap<String, String>
let pairs: HashMap<String, String> = serde_json::from_reader(reader).expect("Failed to deserialize JSON");

pairs
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